Browse > Article
http://dx.doi.org/10.4134/CKMS.c200431

RATIONAL HOMOTOPY TYPE OF MAPPING SPACES BETWEEN COMPLEX PROJECTIVE SPACES AND THEIR EVALUATION SUBGROUPS  

Gatsinzi, Jean-Baptiste (Department of Mathematics and Statistical Sciences Botswana International University of Science and Technology)
Publication Information
Communications of the Korean Mathematical Society / v.37, no.1, 2022 , pp. 259-267 More about this Journal
Abstract
We use L models to compute the rational homotopy type of the mapping space of the component of the natural inclusion in,k : ℂPn ↪ ℂPn+k between complex projective spaces and show that it has the rational homotopy type of a product of odd dimensional spheres and a complex projective space. We also characterize the mapping aut1 ℂPn → map(ℂPn, ℂPn+k; in,k) and the resulting G-sequence.
Keywords
Rational homotopy theory; mapping space; $L_{\infty}$ algebra;
Citations & Related Records
연도 인용수 순위
  • Reference
1 U. Buijs, Y. Felix, and A. Murillo, L rational homotopy of mapping spaces, Rev. Mat. Complut. 26 (2013), no. 2, 573-588. https://doi.org/10.1007/s13163-012-0105-z   DOI
2 Y. Felix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0105-9   DOI
3 J. M. Moller and M. Raussen, Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc. 292 (1985), no. 2, 721-732. https://doi.org/10.2307/2000242   DOI
4 D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes Sci. Publ. Math. No. 47 (1977), 269-331 (1978).
5 J.-B. Gatsinzi, On the genus of elliptic fibrations, Proc. Amer. Math. Soc. 132 (2004), no. 2, 597-606. https://doi.org/10.1090/S0002-9939-03-07203-4   DOI
6 J. Block and A. Lazarev, Andre-Quillen cohomology and rational homotopy of function spaces, Adv. Math. 193 (2005), no. 1, 18-39. https://doi.org/10.1016/j.aim.2004.04.014   DOI
7 E. H. Brown, Jr., and R. H. Szczarba, On the rational homotopy type of function spaces, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4931-4951. https://doi.org/10.1090/S0002-9947-97-01871-0   DOI
8 J.-B. Gatsinzi and R. Kwashira, Rational homotopy groups of function spaces, in Homotopy theory of function spaces and related topics, 105-114, Contemp. Math., 519, Amer. Math. Soc., Providence, RI, 2010. https://doi.org/10.1090/conm/519/10235   DOI
9 U. Buijs, Y. Felix, and A. Murillo, Lie models for the components of sections of a nilpotent fibration, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5601-5614. https://doi.org/10.1090/S0002-9947-09-04870-3   DOI
10 U. Buijs, Y. Felix, and A. Murillo, L models of based mapping spaces, J. Math. Soc. Japan 63 (2011), no. 2, 503-524. http://projecteuclid.org/euclid.jmsj/1303737796   DOI
11 A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), no. 2, 609-620. https://doi.org/10.2307/1999931   DOI
12 G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map. II. Quillen models and adjoint maps, J. Pure Appl. Algebra 209 (2007), no. 1, 173-188. https://doi.org/10.1016/j.jpaa.2006.05.019   DOI
13 D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. https://doi.org/10.2307/2373349   DOI
14 T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), no. 6, 2147-2161. https://doi.org/10.1080/00927879508825335   DOI
15 S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York, 1963.
16 M. H. Woo and K. Y. Lee, On the relative evaluation subgroups of a CW-pair, J. Korean Math. Soc. 25 (1988), no. 1, 149-160.
17 G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map. I. Sullivan models, derivations and G-sequences, J. Pure Appl. Algebra 209 (2007), no. 1, 159-171. https://doi.org/10.1016/j.jpaa.2006.05.018   DOI