1 |
K. Morita, Quasi-associativity and Cayley-Dickson algebras, PTEP. Prog. Theor. Exp. Phys. (2014), Issue 1. (https://doi.org/10.1093/ptep/ptt110)
|
2 |
E. Study, Zur Theorie der linearen Gleichungen, Acta Math. 42 (1920), no. 1, 1-61. https://doi.org/10.1007/BF02404401
DOI
|
3 |
C. Flaut and V. Shpakivskyi, Some identities in algebras obtained by the Cayley-Dickson process, Adv. Appl. Clifford Algebr. 23 (2013), no. 1, 63-76. https://doi.org/10.1007/s00006-012-0344-6
DOI
|
4 |
C. Flaut, About some properties of algebras obtained by the Cayley-Dickson process, Palest. J. Math. 3 (2014), Special issue, 388-394.
|
5 |
H. Aslaksen, Quaternionic Determinants, Mathematical Conversations, Springer, 142-156, 2001.
|
6 |
N. Yamaguchi, Study-type determinants and their properties, Cogent Math. Stat. 6 (2019), no. 1, Art. ID 1683131, 19 pp. https://doi.org/10.1080/25742558.2019.1683131
DOI
|
7 |
C. H. Yang, Lagrange identity for polynomials and δ-codes of lengths 7t and 13t, Proc. Amer. Math. Soc. 88 (1983), no. 4, 746-750. https://doi.org/10.2307/2045475
DOI
|
8 |
A. A. Bogush and Yu. A. Kurochkin, Cayley-Dickson procedure, relativistic wave equations and supersymmetric oscillators, Acta Appl. Math. 50 (1998), no. 1-2, 121-129. https://doi.org/10.1023/A:1005875403156
DOI
|