Browse > Article
http://dx.doi.org/10.4134/CKMS.c180265

STABILIZATION OF 2D g-NAVIER-STOKES EQUATIONS  

Nguyen, Viet Tuan (Faculty of Basic Sciences Sao Do University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.3, 2019 , pp. 819-839 More about this Journal
Abstract
We study the stabilization of 2D g-Navier-Stokes equations in bounded domains with no-slip boundary conditions. First, we stabilize an unstable stationary solution by using finite-dimensional feedback controls, where the designed feedback control scheme is based on the finite number of determining parameters such as determining Fourier modes or volume elements. Second, we stabilize the long-time behavior of solutions to 2D g-Navier-Stokes equations under action of fast oscillating-in-time external forces by showing that in this case there exists a unique time-periodic solution and every solution tends to this periodic solution as time goes to infinity.
Keywords
2D g-Navier-Stokes equations; stabilization; stationary solution; time-periodic solution; finite-dimensional feedback controls; oscillating-in-time forces;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. T. Anh and D. T. Quyet, Long-time behavior for 2D non-autonomous g-Navier-Stokes equations, Ann. Polon. Math. 103 (2012), no. 3, 277-302. https://doi.org/10.4064/ap103-3-5   DOI
2 C. T. Anh, D. T. Quyet, and D. T. Tinh, Existence and nite time approximation of strong solutions to 2D g-Navier-Stokes equations, Acta Math. Vietnam. 38 (2013), no. 3, 413-428. https://doi.org/10.1007/s40306-013-0023-2   DOI
3 C. T. Anh and V. M. Toi, Stabilizing the long-time behavior of the Navier-Stokes-Voigt equations by fast oscillating-in-time forces, Bull. Pol. Acad. Sci. Math. 65 (2017), no. 2, 177-185. https://doi.org/10.4064/ba8094-9-2017   DOI
4 A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters-a reaction-diffusion paradigm, Evol. Equ. Control Theory 3(2014), no. 4, 579-594. https://doi.org/10.3934/eect.2014.3.579   DOI
5 A. Azouani, E. Olson, and E. S. Titi, Continuous data assimilation using general inter-polant observables, J. Nonlinear Sci. 24 (2014), no. 2, 277-304. https://doi.org/10.1007/s00332-013-9189-y   DOI
6 H.-O. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese J. Math. 8 (2004), no. 1, 85-102. https://doi.org/10.11650/twjm/1500558459   DOI
7 J. Cyranka, P. B. Mucha, E. S. Titi, and P. Zgliczynski, Stabilizing the long-time behavior of the forced Navier-Stokes and damped Euler systems by large mean flow, Phys. D 369 (2018), 18-29. https://doi.org/10.1016/j.physd.2017.12.010   DOI
8 J. Jiang and Y. Hou, The global attractor of g-Navier-Stokes equations with linear dampness on $R^2$, Appl. Math. Comput. 215 (2009), no. 3, 1068-1076. https://doi.org/10.1016/j.amc.2009.06.035   DOI
9 J. Jiang and Y. Hou, Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains, Appl. Math. Mech. (English Ed.) 31 (2010), no. 6, 697-708. https://doi.org/10.1007/s10483-010-1304-x   DOI
10 J. Jiang, Y. Hou, and X. Wang, Pullback attractor of 2D nonautonomous g-Navier- Stokes equations with linear dampness, Appl. Math. Mech. (English Ed.) 32 (2011), no. 2, 151-166. https://doi.org/10.1007/s10483-011-1402-x   DOI
11 J. Jiang and X. Wang, Global attractor of 2D autonomous g-Navier-Stokes equations, Appl. Math. Mech. (English Ed.) 34 (2013), no. 3, 385-394. https://doi.org/10.1007/s10483-013-1678-7   DOI
12 J. Kalantarova and T. Ozsari, Finite-parameter feedback control for stabilizing the complex Ginzburg-Landau equation, Systems Control Lett. 106 (2017), 40-46. https://doi.org/10.1016/j.sysconle.2017.06.004   DOI
13 D. T. Quyet, Asymptotic behavior of strong solutions to 2D g-Navier-Stokes equations, Commun. Korean Math. Soc. 29 (2014), no. 4, 505-518. https://doi.org/10.4134/CKMS.2014.29.4.505   DOI
14 V. K. Kalantarov and E. S. Titi, Finite-parameters feedback control for stabilizing damped nonlinear wave equations, in Nonlinear analysis and optimization, 115-133, Contemp. Math., 659, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/659/13193
15 V. K. Kalantarov and E. S. Titi, Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 3, 1325-1345. https://doi.org/10.3934/dcdsb.2018153
16 M. Kwak, H. Kwean, and J. Roh, The dimension of attractor of the 2D g-Navier-Stokes equations, J. Math. Anal. Appl. 315 (2006), no. 2, 436-461. https://doi.org/10.1016/j.jmaa.2005.04.050   DOI
17 H. Kwean, The $H^1$-compact global attractor of two-dimensional g-Navier-Stokes equations, Far East J. Dyn. Syst. 18 (2012), no. 1, 1-20.
18 H. Kwean and J. Roh, The global attractor of the 2D g-Navier-Stokes equations on some unbounded domains, Commun. Korean Math. Soc. 20 (2005), no. 4, 731-749. https://doi.org/10.4134/CKMS.2005.20.4.731   DOI
19 D. T. Quyet and N. V. Tuan, On the stationary solutions to 2D g-Navier-Stokes equations, Acta Math. Vietnam. 42 (2017), no. 2, 357-367. https://doi.org/10.1007/s40306-016-0180-1   DOI
20 J. C. Robinson, Innite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
21 J. Roh, Dynamics of the g-Navier-Stokes equations, J. Differential Equations 211 (2005), no. 2, 452-484. https://doi.org/10.1016/j.jde.2004.08.016   DOI
22 D. Wu and J. Tao, The exponential attractors for the g-Navier-Stokes equations, J. Funct. Spaces Appl. 2012 (2012), Art. ID 503454, 12 pp.