Browse > Article
http://dx.doi.org/10.4134/CKMS.c180212

UPPER BOUND OF SECOND HANKEL DETERMINANT FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER  

Mustafa, Nizami (Department of Mathematics Faculty of Science and Letters Kafkas University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.3, 2019 , pp. 783-797 More about this Journal
Abstract
In this paper, we introduce and investigate a subclass ${\Im}_{\Sigma}({\alpha},{\beta},{\gamma})$ of analytic and bi-univalent functions of complex order in the open unit disk U in complex plane. Here, we obtain an upper bound for the second Hankel determinant of the functions belonging to this class. Moreover, several interesting conclusions of the results obtained here are also discussed.
Keywords
analytic functions; univalent functions; bi-univalent functions; Hankel determinant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A. Hamoui and N. S. Faour (Eds.), Math and Appl Kuwait; February 18-21, 1985.
2 D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69 (1963), 362-366. https://doi.org/10.1090/S0002-9904-1963-10923-4   DOI
3 M. Caglar, S. Aslan, Fekete-Szeg inequalities for subclasses of bi-univalent functions satisfying subordinate conditions, AIP Conference Proceedings 1726 (2016), 020078; https://doi.org/10.1063/1.4945904
4 M. Caglar, E. Deniz, and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math. 41 (2017), no. 3, 694-706. https://doi.org/10.3906/mat-1602-25   DOI
5 M. Caglar, H. Orhan, and N. Yagmur, Coecient bounds for new subclasses of biunivalent functions, Filomat 27 (2013), no. 7, 1165-1171. https://doi.org/10.2298/FIL1307165C   DOI
6 E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (2013), no. 1, 49-60. https://doi.org/10.7153/jca-02-05   DOI
7 E. Deniz, M. Caglar, and H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order $\beta$, Appl. Math. Comput. 271 (2015), 301-307. https://doi.org/10.1016/j.amc.2015.09.010   DOI
8 P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
9 M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 2, 85-89. https://doi.org/10.1112/jlms/s1-8.2.85
10 D. A. Brannan and J. Clunie J, Aspects of Contemporary Complex Analysis, Academic Press, Inc., London, 1980.
11 B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat. 43 (2014), no. 3, 383-389.
12 A. Janteng, S. A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 13-16, 619-625.
13 C. Y. Gao and S. Q. Zhou, Certain subclass of starlike functions, Appl Mat Comput 187 (2007), 176-182.   DOI
14 U. Grenander and G. Szego, Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958.
15 S. G. Hamidi and J. M. Jahangiri, Faber polynomial coecient estimates for analytic bi-close-to-convex functions, C. R. Math. Acad. Sci. Paris 352 (2014), no. 1, 17-20. https://doi.org/10.1016/j.crma.2013.11.005   DOI
16 A. W. Kedzierawski, Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 39 (1985), 77-81 (1988).
17 F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.2307/2035949   DOI
18 S. S. Kumar, V. Kumar, and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxf. J. Inf. Math. Sci. 29 (2013), no. 4, 487-504.
19 S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), 281, 17 pp. https://doi.org/10.1186/1029-242X-2013-281
20 M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.2307/2035225   DOI
21 B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048   DOI
22 J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.2307/1997533   DOI
23 C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Gottingen, 1975.
24 H. Orhan, E. Deniz, and D. Raducanu, The Fekete-Szego problem for subclasses of analytic functions dened by a differential operator related to conic domains, Comput. Math. Appl. 59 (2010), no. 1, 283-295. https://doi.org/10.1016/j.camwa.2009.07.049   DOI
25 H. Orhan, N. Magesh, and V. K. Balaji, Initial coecient bounds for a general class of bi-univalent functions, Filomat 29 (2015), no. 6, 1259-1267. https://doi.org/10.2298/FIL1506259O   DOI
26 H. Orhan, N. Magesh, and J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math. 40 (2016), no. 3, 679-687. https://doi.org/10.3906/mat-1505-3   DOI
27 H. M. Srivastava, S. Bulut, M. Caglar, and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), no. 5, 831-842. https://doi.org/10.2298/FIL1305831S   DOI
28 D. L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A 5 (1984), no. 5, 559-568.
29 H. M. Srivastava, S. S. Eker, and R. M. Ali, Coecient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), no. 8, 1839-1845. https://doi.org/10.2298/FIL1508839S   DOI
30 H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009   DOI
31 Q.-H. Xu, Y.-C. Gui, and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994. https://doi.org/10.1016/j.aml.2011.11.013   DOI
32 Q.-H. Xu, H.-G. Xiao, and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), no. 23, 11461-11465. https://doi.org/10.1016/j.amc.2012.05.034   DOI
33 O. Altintas, Ozkan, and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), no. 3, 63-67. https://doi.org/10.1016/S0893-9659(99)00187-1   DOI
34 D.-G. Yang and J.-L. Liu, A class of analytic functions with missing coecients, Abstr. Appl. Anal. 2011 (2011), Art. ID 456729, 16 pp. https://doi.org/10.1155/2011/456729
35 P. Zaprawa, On the Fekete-Szego problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 1, 169-178. http://projecteuclid.org/euclid.bbms/1394544302   DOI
36 P. Zaprawa, Estimates of initial coecients for bi-univalent functions, Abstr. Appl. Anal. 2014 (2014), Art. ID 357480, 6 pp. https://doi.org/10.1155/2014/357480