Browse > Article
http://dx.doi.org/10.4134/CKMS.c170080

NON-ZERO CONSTANT CURVATURE FACTORABLE SURFACES IN PSEUDO-GALILEAN SPACE  

Aydin, Muhittin Evren (Department of Mathematics Faculty of Science Firat University)
Kulahci, Mihriban (Department of Mathematics Faculty of Science Firat University)
Ogrenmis, Alper Osman (Department of Mathematics Faculty of Science Firat University)
Publication Information
Communications of the Korean Mathematical Society / v.33, no.1, 2018 , pp. 247-259 More about this Journal
Abstract
Factorable surfaces, i.e. graphs associated with the product of two functions of one variable, constitute a wide class of surfaces in differential geometry. Such surfaces in the pseudo-Galilean space with zero Gaussian and mean curvature were obtained in [2]. In this study, we provide new results relating to the factorable surfaces with non-zero constant Gaussian and mean curvature.
Keywords
pseudo-Galilean space; factorable surface; Gaussian curvature; mean curvature;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Lopez and M. Moruz, Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc. 52 (2015), no. 3, 523-535.   DOI
2 H. Meng and H. Liu, Factorable surfaces in Minkowski space, Bull. Korean Math. Soc. 46 (2009), no. 1, 155-169.   DOI
3 Z. Milin-Sipus, On a certain class of translation surfaces in a pseudo-Galilean space, Int. Mat. Forum 6 (2012), no. 23, 1113-1125.
4 Z. Milin-Sipus and B. Divjak, Some special surfaces in the pseudo-Galilean Space, Acta Math. Hungar. 118 (2008), no. 3, 209-226.   DOI
5 Z. Milin-Sipus and B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space, Int. J. Math. Sci. 2012 (2012), Art ID375264, 28pp.
6 B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
7 A. Onishchick and R. Sulanke, Projective and Cayley-Klein Geometries, Springer, 2006.
8 A. D. Polyanin, W. E. Schiesser, and A. I. Zhurov, Partial differential equation, Schol-arpedia, 3 (2008), no. 10, 4605, revision #121514.
9 L. Simon, The minimal surface equation, Geometry, V, 239-272, Encyclopaedia Math. Sci., 90, Springer, Berlin, 1997.
10 R. Lopez, Separation of variables in equations of mean-curvature type, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 5, 1017-1035.   DOI
11 L. Simon, Equations of mean curvature type in 2 independent variables, Pacific J. Math. 69 (1977), no. 1, 245-268.   DOI
12 V. Ushakov, The explicit general solution of trivial Monge-Ampere equation, Comment. Math. Helv. 75 (2000), no. 1, 125-133.   DOI
13 I. Van de Woestyne, Minimal homothetical hypersurfaces of a semi-Euclidean space, Results Math. 27 (1995), no. 3-4, 333-342.   DOI
14 P. Zong, L. Xiao, and H. Liu, Affine factorable surfaces in three-dimensional Euclidean space, Acta Math. Sinica (Chin. Ser.) 58 (2015), no. 2, 329-336.
15 I. M. Yaglom, A simple non-Euclidean Geometry and Its Physical Basis, An elementary account of Galilean geometry and the Galilean principle of relativity, Heidelberg Science Library. Translated from the Russian by Abe Shenitzer. With the editorial assistance of Basil Gordon. Springer-Verlag, New York-Heidelberg, 1979.
16 D. W. Yoon, Classification of rotational surfaces in pseudo-Galilean space, Glas. Mat. Ser. III 50 (2015), no. 2, 453-465.   DOI
17 Y. Yu and H. Liu, The factorable minimal surfaces, Proceedings of the Eleventh In-ternational Workshop on Differential Geometry, 33-39, Kyungpook Nat. Univ., Taegu, 2007.
18 M. Bekkar and B. Senoussi, Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying ${\Delta}r_i\;=\;{\lambda}_ir_i$, J. Geom. 103 (2012), no. 1, 17-29.   DOI
19 M. E. Aydin, A. Mihai, A. O. Ogrenmis, and M. Ergut, Geometry of the solutions of localized induction equation in the pseudo-Galilean space, Adv. Math. Phys. 2015 (2015), Art ID905978, 7pp.
20 M. E. Aydin, A. O. Ogrenmis, and M. Ergut, Classification of factorable surfaces in the pseudo-Galilean space, Glas. Mat. Ser. III 50(70) (2015), no. 2, 441-451.   DOI
21 B.-Y. Chen, Pseudo-Riemannian Geometry, $\delta$-Invariants and Applications, World Sci-entific, Hackensack, NJ, 2011.
22 B.-Y. Chen, A note on homogeneous production models, Kragujevac J. Math. 36 (2012), no. 1, 41-43.
23 B. Divjak and Z. M. Sipus, Special curves on ruled surfaces in Galilean and pseudo-Galilean spaces, Acta Math. Hungar. 98 (2003), no. 3, 203-215.   DOI
24 B.-Y. Chen and G. E. Vilcu, Geometric classifications of homogeneous production functions, Appl. Math. Comput. 225 (2013), 345-351.
25 M. J. P. Cullen and R. J. Douglas, Applications of the Monge-Ampere equation and Monge transport problem to meterology and oceanography, In: L. A. Caffarelli, M. Mil-man (eds.), NSF-CBMS Conference on the Monge Ampere Equation, Applications to Geometry and Optimization, July 9-13, pp. 33-54, Florida Atlantic University, 1997.
26 M. Dede, Tube surfaces in pseudo-Galilean space, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 5, 1650056, 10 pp.
27 Z. Erjavec, On generalization of helices in the Galilean and the pseudo-Galilean space, J. Math. Research 6 (2014), no. 3, 39-50.
28 O. Giering, Vorlesungen uber hohere Geometrie, Friedr. Vieweg & Sohn, Braunschweig, Germany, 1982.
29 W. Goemans and I. Van de Woestyne, Translation and homothetical lightlike hypersur-faces of semi-Euclidean space, Kuwait J. Sci. Engrg. 38 (2011), no. 2A, 35-42.
30 A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press LLC, 1998.
31 D. Klawitter, Clifford Algebras: Geometric Modelling and Chain Geometries with Ap-plication in Kinematics, Springer Spektrum, 2015.
32 B.-Y. Chen, Solutions to homogeneous Monge-Ampere equations of homothetic functions and their applications to production models in economics, J. Math. Anal. Appl. 411 (2014), no. 1, 223-229.   DOI
33 L. Jiu and H. Sun, On minimal homothetical hypersurfaces, Colloq. Math. 109 (2007), no. 2, 239-249.   DOI