Browse > Article
http://dx.doi.org/10.4134/CKMS.2014.29.2.285

STABLE WEAK SHADOWABLE SYMPLECTOMORPHISMS ARE PARTIALLY HYPERBOLIC  

Bessa, Mario (Universidade da Beira Interior Rua Marques d'Avila e Bolama)
Vaz, Sandra (Universidade da Beira Interior Rua Marques d'Avila e Bolama)
Publication Information
Communications of the Korean Mathematical Society / v.29, no.2, 2014 , pp. 285-293 More about this Journal
Abstract
Let M be a closed, symplectic connected Riemannian manifold and f a symplectomorphism on M. We prove that if f is $C^1$-stably weak shadowable on M, then the whole manifold M admits a partially hyperbolic splitting.
Keywords
partial hyperbolicity; weak shadowing; symplectomorphisms;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. Abdenur and S. Crovisier. Transitivity and topological mixing for $C^1$ diffeomorphisms, Essays in mathematics and its applications, 1-16, Springer, Heidelberg, 2012.
2 M.-C. Arnaud, C. Bonatti, and S. Crovisier, Dynamique sympletiques generiques, Ergodic Theory Dynam. Systems 25 (2005), no. 5, 1401-1436.   DOI   ScienceOn
3 A. Avila, J. Bochi, and A. Wilkinson, Nonuniform center bunching and the genericity of ergodicity among $C^1$ partially hyperbolic symplectomorphisms, Ann. Sci. Ec. Norm. Super. 42 (2009), no. 6, 931-979.   DOI
4 M. Bessa, $C^1$-stably shadowable conservative diffeomorphisms are Anosov, Bull. Korean Math. Soc. 50 (2013), no. 5, 1495-1499.   과학기술학회마을   DOI   ScienceOn
5 M. Bessa, M. Lee, and S. Vaz, Stable weakly shadowable volume-preserving systems are volume-hyperbolic, Acta Math. Sin.(Engl. Ser.) (to appear).
6 M. Bessa and J. Rocha, A remark on the topological stability of symplectomorphisms, Appl. Math. Lett. 25 (2012), no. 2, 163-165.   DOI   ScienceOn
7 J. Bochi and M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, in Modern Dynamical Systems and Applications, 271-297, Cambridge Univ. Press, Cambridge, 2004.
8 C. Bonatti, L. J. Diaz, and M. Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III. Springer-Verlag, Berlin, 2005.
9 C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157-193.   DOI
10 R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., Vol. 470, Springer, Berlin, New York, 1975.
11 M. Brin, Topological transitivity of one class of dynamical systems and flows of frames on manifolds of negative curvature, Funct. Anal. Appl. 9 (1975), no. 1, 8-16.   DOI
12 S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 104 (2006), 87-141.   DOI   ScienceOn
13 D. Dolgopyat and A. Wilkinson, Stable accessibility is $C^1$ dense, Asterisque 287 (2003), 33-60.
14 S. Gan, K. Sakai, and L. Wen, $C^1$-stably weakly shadowing homoclinic classes admit dominated splitting, Discrete Contin. Dyn. Syst. 27 (2010), no. 1, 205-216.   DOI
15 R. Gu, The asymptotic average-shadowing property and transitivity for flows, Chaos Solitons Fractals 41 (2009), no. 5, 2234-2240.   DOI   ScienceOn
16 V. Horita and A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Inst. H. Poincare Anal. Non Lineaire 23 (2006), no. 5, 641-661.   DOI   ScienceOn
17 S. Yu. Pilyugin, K. Sakai, and O. A. Tarakanov, Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing, Discrete Contin. Dyn. Syst. 16 (2006), no. 4, 871-882.   DOI
18 M. Lee, Volume preserving diffeomorphisms with weak and limit weak shadowing Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 319-325.
19 S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (1977), no. 5, 1061-1087.   DOI   ScienceOn
20 S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math., 1706, Springer-Verlag, Berlin, 1999.
21 E. R. Pujals, Some simple questions related to the $C^r$ stability conjecture, Nonlinearity 21 (2008), no. 11, 233-237.   DOI   ScienceOn
22 C. Robinson, Generic Properties of Conservative Systems. II, Amer. J. Math. 92 (1970), no. 4, 897-906.   DOI   ScienceOn
23 K. Sakai, $C^1$-stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029.
24 K. Sakai, Diffeomorphisms with weak shadowing, Fund. Math. 168 (2001), no. 1, 57-75.   DOI
25 K. Sakai, Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds, Rocky Mountain J. Math. 30 (2000), no. 3, 1129-1137.   DOI
26 A. Tahzibi, Stably ergodic diffeomorphisms which are not partially hyperbolic, Israel J. Math. 142 (2004), 315-344.   DOI
27 D. Yang, Stably weakly shadowing transitive sets and dominated splittings, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2747-2751.   DOI   ScienceOn
28 R. M. Corless and S. Yu. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423.   DOI   ScienceOn
29 R. Saghin and Z. Xia, Partial hyperbolicity or dense elliptic periodic points for $C^1$-generic symplectic diffeomorphisms, Trans. Amer. Math. Soc. 358 (2006), no. 11, 5119-5138.   DOI   ScienceOn
30 J. Moser and E. Zehnder, Notes on dynamical systems, Courant Lect. Notes Math., 12. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2005.