Browse > Article
http://dx.doi.org/10.4134/CKMS.2014.29.2.269

FURTHER EXPANSION AND SUMMATION FORMULAS INVOLVING THE HYPERHARMONIC FUNCTION  

Gaboury, Sebastien (Department of Mathematics and Computer Science University of Quebec at Chicoutimi)
Publication Information
Communications of the Korean Mathematical Society / v.29, no.2, 2014 , pp. 269-283 More about this Journal
Abstract
The aim of the paper is to present several new relationships involving the hyperharmonic function introduced by Mez$\ddot{o}$ in (I. Mez$\ddot{o}$, Analytic extension of hyperharmonic numbers, Online J. Anal. Comb. 4, 2009) which is an analytic extension of the hyperharmonic numbers. These relations are obtained by using some fractional calculus theorems as Leibniz rules and Taylor like series expansions.
Keywords
fractional derivatives; generalized Taylor expansion; generalized Leibniz rules; integral analogue; summation formula;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. T. Benjamin and D. Gaebler, and R. Gaebler, A combinatorial approach to hyperharmonic numbers, Integers 3 (2003), 1-9.
2 J. H. Conway and R. K. Guy, The Book of Numbers, Sringer-Verlag, New York, 1996.
3 A. Erdelyi, An integral equation involving Legendre functions, J. Soc. Indust. Appl. Math. 12 (1964), 15-30.   DOI   ScienceOn
4 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions. Vols. 1-3, McGraw-Hill, New York, 1953.
5 G. H. Hardy, Riemann's forms of Taylor's series, J. London. Math. Soc. 20 (1945), 48-57.
6 O. Heaviside, Electromagnetic Theory. Vol. 2, Dover, New York, 1950.
7 J.-L. Lavoie, T. J. Osler, and R. Tremblay, Fundamental properties of fractional derivatives via Pochhammer integrals, Lecture Notes in Mathematics, Springer-Verlag, 1976.
8 J. Liouville, Memoire sur le calcul des differentielles a indices quelconques, J. de l'Ecole Polytechnique 13 (1832), 71-162.
9 I. Mezo, Analytic extension of hyperharmonic numbers, Online J. Anal. Comb. 4 (2009), 9 pp.
10 I. Mezo and A. Dil, Hyperharmonic series involving Hurwitz zeta function, J. Number Theory 130 (2010), no. 2, 360-369.   DOI   ScienceOn
11 K. S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, New York, Chichester, Brisbane, Toronto and Singapore, John Wiley and Sons, Wiley, New York, 1993.
12 T. J. Osler, Fractional derivatives of a composite function, SIAM J. Math. Anal. 1 (1970), 288-293.   DOI
13 T. J. Osler, Taylor's series generalized for fractional derivatives and applications, SIAM J. Math. Anal. 2 (1971), 37-48.   DOI
14 T. J. Osler, Leibniz rule for fractional derivatives generalized and an application to infinite series, SIAM J. Appl. Math. 18 (1970), 658-674.   DOI   ScienceOn
15 T. J. Osler, Leibniz rule, the chain rule and Taylor's theorem for fractional derivatives, PhD Thesis, New York University, 1970.
16 M. Riesz, L'integrale de Riemann-Liouville et le probleme de Cauchy, Acta Math. 81 (1949), 1-233.   DOI
17 T. J. Osler, Mathematical notes: Fractional derivatives Leibniz rule, Amer. Math. Monthly 78 (1971), no. 6, 645-649.   DOI   ScienceOn
18 T. J. Osler, An integral analogue of Taylor's series and its use in computing Fourier's transform, Math. Comput. 26 (1972), 449-460.
19 B. Riemann, Versuch einer allgemeinen Auffasung der Integration und Differentiation, The Collection Works of Bernhard Riemann, Dover New York, 1953.
20 L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press London, 1966.
21 R. Tremblay, Une contribution a la theorie de la derivee fractionnaire, PhD Thesis, Laval University, Canada, 1974.
22 J.-L. Lavoie, T. J. Osler, and R. Tremblay, Fundamental properties of fractional derivatives via Pochhammer integrals, Lecture Notes in Mathematics, Springer-Verlag, 1976.
23 R. Tremblay and B. J. Fugere, The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions, Appl. Math. Comput. 187 (2007), no. 1, 507-529.   DOI   ScienceOn
24 R. Tremblay, S. Gaboury, and B.-J. Fugere, A new Leibniz rule and its integral analogue for fractional derivatives, Integral Transforms Spec. Funct. 24 (2013), no. 2, 111-128.   DOI
25 R. Tremblay, S. Gaboury, and B.-J. Fugere, Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives, Integral Transforms Spec. Funct. 24 (2013), no. 1, 50-64.   DOI
26 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Tables of Integral Transforms. Vols. 1-2, McGraw-Hill, New York, 1953.
27 Y. Watanabe, Zum Riemanschen binomischen Lehrsatz, Proc. Phys. Math. Soc. Japan 14 (1932), 22-35.