Browse > Article
http://dx.doi.org/10.4134/CKMS.2013.28.3.571

A NOTE ON THE LORENTZIAN LIMIT CURVE THEOREM  

Yun, Jong-Gug (Department of Mathematics Education Korea National University of Education)
Publication Information
Communications of the Korean Mathematical Society / v.28, no.3, 2013 , pp. 571-580 More about this Journal
Abstract
In this paper, we extend the familiar limit curve theorem in [2] to a situation where each causal curve lies in a sequence of compact interpolating spacetimes converging to a limit Lorentz space in the sense of Lorentzian Gromov-Hausdorff distance.
Keywords
limit curve theorem; Lorentzian Gromov-Hausdorff distance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Bombelli and J. Noldus, The moduli space of isometry classes of globally hyperbolic spacetimes, Classical Quantum Gravity 21 (2004), no. 18, 4429-4453.   DOI   ScienceOn
2 S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambidge University Press, 1973.
3 J. Noldus, A Lorentzian Gromov-Hausdorff notion of distance, Classical Quantum Gravity 21 (2004), no. 4, 839-850.   DOI   ScienceOn
4 J. Noldus, Lorentzian Gromov Hausdorff theory as a tool for quantum gravity kinematics, PhD thesis, Gent University, 2004.
5 J. Noldus, The limit space of a Cauchy sequence of globally hyperbolic spacetimes, Classical Quantum Gravity 21 (2004), no. 4, 851-874.   DOI   ScienceOn
6 R. Penrose, R. D. Sorkin, and E. Woolgar, A positive mass theorem based on the focusing and retardation of null geodesics, gr-qc/9301015.
7 R. Sorkin and E. Woolgar, A causal order for spacetimes with $C^0$ Lorentzian metrics: proof of compactness of the space of causal curves, Classical Quantum Gravity 13 (1996), no. 7, 1971-1993.   DOI   ScienceOn