1 |
L. Bombelli and J. Noldus, The moduli space of isometry classes of globally hyperbolic spacetimes, Classical Quantum Gravity 21 (2004), no. 18, 4429-4453.
DOI
ScienceOn
|
2 |
S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambidge University Press, 1973.
|
3 |
J. Noldus, A Lorentzian Gromov-Hausdorff notion of distance, Classical Quantum Gravity 21 (2004), no. 4, 839-850.
DOI
ScienceOn
|
4 |
J. Noldus, Lorentzian Gromov Hausdorff theory as a tool for quantum gravity kinematics, PhD thesis, Gent University, 2004.
|
5 |
J. Noldus, The limit space of a Cauchy sequence of globally hyperbolic spacetimes, Classical Quantum Gravity 21 (2004), no. 4, 851-874.
DOI
ScienceOn
|
6 |
R. Penrose, R. D. Sorkin, and E. Woolgar, A positive mass theorem based on the focusing and retardation of null geodesics, gr-qc/9301015.
|
7 |
R. Sorkin and E. Woolgar, A causal order for spacetimes with Lorentzian metrics: proof of compactness of the space of causal curves, Classical Quantum Gravity 13 (1996), no. 7, 1971-1993.
DOI
ScienceOn
|