Browse > Article
http://dx.doi.org/10.4134/CKMS.2011.26.4.551

A SHORT PROOF OF AN IDENTITY FOR CUBIC PARTITION FUNCTION  

Xiong, Xinhua (Department of Mathematics China Three Gorges University)
Publication Information
Communications of the Korean Mathematical Society / v.26, no.4, 2011 , pp. 551-555 More about this Journal
Abstract
In this note, we will give a short proof of an identity for cubic partition function.
Keywords
q-series identities; modular functions; cubic partition;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 X. H. Xiong, Cubic partition modulo powers of 5, arXiv:math.NT/1004.4737.
2 H.-C. Chan, Ramanujan's cubic continued fraction and an analog of his \most beautiful identity", Int. J. Number Theory 6 (2010), no. 3, 673-680.   DOI   ScienceOn
3 H.-C. Chan, Ramanujan's cubic continued fraction and Ramanujan type congruences for a ceratin partition function, Int. J. Number Theory, 6 (2010), no. 4, 819-834.   DOI   ScienceOn
4 H.-C. Chan, A new proof of two identities involving Ramanujan's cubic continued fraction, Ramanujan J. 21 (2010), no. 2, 173-180.   DOI
5 B. Gordon and K. Hughies, Ramanujan congruence for q(n), Analytic number theory (Philadelphia, Pa., 1980), pp. 333-359, Lecture Notes in Math., 899, Springer, Berlin-New York, 1981.   DOI
6 B. Kim, A crank analog on a certain kind of partition function arising from the cubic continued fraction, preprint, 2008.
7 G. Ligozat, Courbes modulaires de genre 1, Memoires de la Societe Mathematique de France 43 (1975), 5-80.
8 M. Newman, Constructions and applications of a class of modular functions II, Proc. London Math. Soc. (3) 9 (1959), 373-381.   DOI
9 G. N.Watson, Beweis von Ramanujans Vermutungen uber Zerfallungsanzahlen, J. Reine und Angew. Math. 179 (1938), 97-128.