Browse > Article
http://dx.doi.org/10.4134/CKMS.2005.20.1.117

CONNECTEDNESS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES  

KIM, YONG-CHAN (Department of Mathematics Kangnung National University)
ABBAS S. E. (Department of Mathematics Faculty of Science South Valley University)
Publication Information
Communications of the Korean Mathematical Society / v.20, no.1, 2005 , pp. 117-134 More about this Journal
Abstract
We introduce the notion of (r,s)-connected sets in intuitionistic fuzzy topological spaces and investigate some properties of them. In particular, we show that every (r,s)-component in an intuitionistic fuzzy topological space is (r,s)-component in the stratification of it.
Keywords
intuitionistic (stratified) fuzzy topological spaces; (r,s)-separated ((r,s)-connected) fuzzy sets; (r,s)-components;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Coker, An introduction of intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89   DOI   ScienceOn
2 D. Coker and M. Demirsi, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, Busefal 67 (1996), 67-76
3 U. Hohle and A. P. Sostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems 73 (1995), 131-149   DOI   ScienceOn
4 U. Hohle, Axiomatic Foundations of Fixed-Basis fuzzy topology, Handb. Fuzzy Sets Ser. Kluwer Acad. Publ., Dordrecht (Chapter 3) 3 (1999)
5 P. M. Pu and Y. M. Liu, fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599   DOI
6 S. K. Samanta and T. K. Mondal, Intuitionistic gradation of openness: intu- itionistic fuzzy topology, Busefal 73 (1997), 8-17
7 S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002), 323-336   DOI   ScienceOn
8 A. P. Sostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo(2)Suppl. 11 (1985), 89-103
9 A. P. Sostak, On the neighbourhood structure of a fuzzy topological space, Zb. Rad. 4 (1990), 7-14
10 K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96   DOI   ScienceOn
11 K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1993), 131-142
12 C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190   DOI
13 K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: Fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242   DOI   ScienceOn
14 K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: fuzzy closure, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212   DOI   ScienceOn
15 Y. C. Kim and Y. S. Kim, Connectedness in smooth fuzzy topological space, Far East J. Math. Sci. 5 (2002), no.3, 165-180
16 T. Kubiak and A. P. Sostak, Lower set-valued fuzzy topologies, Quaest. Math. 20 (1997), no.3, 423-429   DOI
17 R. Lowen, Connectedness in fuzzy topological spaces, Rocky Mountain J. Math. 11 (1981), 427-433   DOI
18 E. P. Lee and Y. B. Im, Mated fuzzy topological spaces, Int. Journal of fuzzy logic and intelligent systems 11 (2001), no. 2, 161-165
19 Y. M. Liu and M. K. Luo, Fuzzy topology, World Scientific Publishing Co. Sin- gapore, 1997
20 R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621-633   DOI
21 W. Peeters, Subspaces of smooth fuzzy topologies and initial smooth fuzzy struc-tures, Fuzzy Sets and Systems 104 (1999), 423-433   DOI   ScienceOn
22 A. P. Sostak,Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), no. 6, 662-701   DOI   ScienceOn
23 X. D. Zhao, Connectedness on fuzzy topological spaces, Fuzzy Sets and Systems 20 (1986), 223-240   DOI   ScienceOn
24 Y. C. Kim, Stratifications of smooth fuzzy topological spaces, J. Fuzzy Math. 9 (2001), no. 2, 381-390
25 A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375   DOI   ScienceOn
26 K. Atanassov and G. Gargov, Elements of intuitionistic fuzzy logic, Fuzzy Sets and Systems 95 (1998), 39-52   DOI   ScienceOn