Browse > Article
http://dx.doi.org/10.4134/JKMS.j200064

WEAK CONVERGENCE FOR STATIONARY BOOTSTRAP EMPIRICAL PROCESSES OF ASSOCIATED SEQUENCES  

Hwang, Eunju (Department of Applied Statistics Gachon University)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.1, 2021 , pp. 237-264 More about this Journal
Abstract
In this work the stationary bootstrap of Politis and Romano [27] is applied to the empirical distribution function of stationary and associated random variables. A weak convergence theorem for the stationary bootstrap empirical processes of associated sequences is established with its limiting to a Gaussian process almost surely, conditionally on the stationary observations. The weak convergence result is proved by means of a random central limit theorem on geometrically distributed random block size of the stationary bootstrap procedure. As its statistical applications, stationary bootstrap quantiles and stationary bootstrap mean residual life process are discussed. Our results extend the existing ones of Peligrad [25] who dealt with the weak convergence of non-random blockwise empirical processes of associated sequences as well as of Shao and Yu [35] who obtained the weak convergence of the mean residual life process in reliability theory as an application of the association.
Keywords
Stationary bootstrap; empirical process; weak convergence; associated random variables; mean residual life process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Asadi and A. Berred, Properties and estimation of the mean past lifetime, Statistics 46 (2012), no. 3, 405-417. https://doi.org/10.1080/02331888.2010.540666   DOI
2 P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York, 1968.
3 P. Buhlmann, Blockwise bootstrapped empirical process for stationary sequences, Ann. Statist. 22 (1994), no. 2, 995-1012. https://doi.org/10.1214/aos/1176325508   DOI
4 P. Buhlmann, The blockwise bootstrap for general empirical processes of stationary sequences, Stochastic Process. Appl. 58 (1995), no. 2, 247-265. https://doi.org/10.1016/0304-4149(95)00019-4   DOI
5 A. Bulinski and A. Shashkin, Limit theorems for associated random fields and related systems, Advanced Series on Statistical Science & Applied Probability, 10, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. https://doi.org/10.1142/9789812709417   DOI
6 P. Doukhan, Stochastic models for time series, Mathematiques & Applications (Berlin), 80, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-76938-7   DOI
7 P. Doukhan, G. Lang, A. Leucht, and M. H. Neumann, Dependent wild bootstrap for the empirical process, J. Time Series Anal. 36 (2015), no. 3, 290-314. https://doi.org/10.1111/jtsa.12106   DOI
8 P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic Process. Appl. 84 (1999), no. 2, 313-342. https://doi.org/10.1016/S0304-4149(99)00055-1   DOI
9 P. Doukhan and D. Surgailis, Functional central limit theorem for the empirical process of short memory linear processes, C. R. Acad. Sci. Paris Ser. I Math. 326 (1998), no. 1, 87-92. https://doi.org/10.1016/S0764-4442(97)82718-8   DOI
10 F. El Ktaibi, B. G. Ivanoff, and N. C. Weber, Bootstrapping the empirical distribution of a linear process, Statist. Probab. Lett. 93 (2014), 134-142. https://doi.org/10.1016/j.spl.2014.06.019   DOI
11 F. El Ktaibi and B. G. Ivanoff, Bootstrapping the empirical distribution of a stationary process with change-point, Electron. J. Stat. 13 (2019), no. 2, 3572-3612. https://doi.org/10.1214/19-ejs1613   DOI
12 J. K. Ghosh, A new proof of the Bahadur representation of quantiles and an application, Ann. Math. Statist. 42 (1971), 1957-1961. https://doi.org/10.1214/aoms/1177693063   DOI
13 E. Hwang and D. W. Shin, Stationary bootstrapping realized volatility under market microstructure noise, Electron. J. Stat. 7 (2013), 2032-2053.   DOI
14 E. Hwang and D. W. Shin, Stationary bootstrapping for non-parametric estimator of nonlinear autoregressive model, J. Time Series Anal. 32 (2011), no. 3, 292-303. https://doi.org/10.1111/j.1467-9892.2010.00699.x   DOI
15 E. Hwang and D. W. Shin, Strong consistency of the stationary bootstrap under ψ-weak dependence, Stat. Probab. Lett. 82 (2012), 488-495.   DOI
16 E. Hwang and D. W. Shin, Random central limit theorems for linear processes with weakly dependent innovations, J. Korean Stat. Soc. 41 (2012), 313-322.   DOI
17 E. Hwang and D. W. Shin, Stationary bootstrapping realized volatility, Stat. Probab. Lett. 83 (2013), 2045-2051.   DOI
18 E. Hwang and D. W. Shin, Stationary bootstrapping for semiparametric panel unit root tests, Comput. Statist. Data Anal. 83 (2015), 14-25. https://doi.org/10.1016/j.csda.2014.09.004   DOI
19 H. R. Kunsch, The jackknife and the bootstrap for general stationary observations, Ann. Statist. 17 (1989), no. 3, 1217-1241. https://doi.org/10.1214/aos/1176347265   DOI
20 S. Lee, Random central limit theorem for the linear process generated by a strong mixing process, Statist. Probab. Lett. 35 (1997), no. 2, 189-196. https://doi.org/10.1016/S0167-7152(97)00013-8   DOI
21 S. Louhichi, Weak convergence for empirical processes of associated sequences, Ann. Inst. H. Poincare Probab. Statist. 36 (2000), no. 5, 547-567. https://doi.org/10.1016/S0246-0203(00)00140-0   DOI
22 M. Peligrad, On the blockwise bootstrap for empirical processes for stationary sequences, Ann. Probab. 26 (1998), no. 2, 877-901. https://doi.org/10.1214/aop/1022855654   DOI
23 U. V. Naik-Nimbalkar and M. B. Rajarshi, Validity of blockwise bootstrap for empirical processes with stationary observations, Ann. Statist. 22 (1994), no. 2, 980-994. https://doi.org/10.1214/aos/1176325507   DOI
24 M. S. Noughabi and M. Kayid, Bivariate quantile residual life: a characterization theorem and statistical properties, Statist. Papers 60 (2019), no. 6, 2001-2012. https://doi.org/10.1007/s00362-017-0905-9   DOI
25 A. Parvardeh, A note on the asymptotic distribution of the estimation of the mean past lifetime, Statist. Papers 56 (2015), no. 1, 205-215. https://doi.org/10.1007/s00362-013-0575-1   DOI
26 H. Pishro-Nik, Introduction to Probability Statistics and Random Processes, Kappa Research. LLC. www.probabilitycourse.com, 2016.
27 D. N. Politis and J. P. Romano, The stationary bootstrap, J. Amer. Statist. Assoc. 89 (1994), no. 428, 1303-1313.   DOI
28 D. N. Politis and J. P. Romano, Limit theorems for weakly dependent Hilbert space valued random variables with applications to the stationary bootstrap, Stat. Sin. 4 (1994), 461-476.
29 D. Radulovic, The bootstrap for empirical processes based on stationary observations, Stochastic Process. Appl. 65 (1996), no. 2, 259-279. https://doi.org/10.1016/S0304-4149(96)00102-0   DOI
30 D. Pollard, Convergence of Stochastic Processes, Springer Series in Statistics, Springer-Verlag, New York, 1984. https://doi.org/10.1007/978-1-4612-5254-2   DOI
31 Q. M. Shao and H. Yu, Bootstrapping the sample means for stationary mixing sequences, Stochastic Process. Appl. 48 (1993), no. 1, 175-190. https://doi.org/10.1016/0304-4149(93)90113-I   DOI
32 D. Radulovic, The bootstrap of empirical processes for α-mixing sequences, in High Dimensional Probability (E. Eberlein, M. Hahn and M. Talagrand, eds.), 315-330, Birkhauser, Basel, 1998.
33 G. G. Roussas, Kernel estimates under association: strong uniform consistency, Statist. Probab. Lett. 12 (1991), no. 5, 393-403. https://doi.org/10.1016/0167-7152(91)90028-P   DOI
34 X. Shao, The dependent wild bootstrap, J. Amer. Statist. Assoc. 105 (2010), no. 489, 218-235. https://doi.org/10.1198/jasa.2009.tm08744   DOI
35 Q. M. Shao and H. Yu, Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab. 24 (1996), no. 4, 2098-2127. https://doi.org/10.1214/aop/1041903220   DOI
36 B. Wieczorek, Blockwise bootstrap of the estimated empirical process based on ψ-weakly dependent observations, Stat. Inference Stoch. Process. 19 (2016), no. 1, 111-129. https://doi.org/10.1007/s11203-015-9120-2   DOI
37 H. Yu, A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences, Probab. Theory Related Fields 95 (1993), no. 3, 357-370. https://doi.org/10.1007/BF01192169   DOI