Browse > Article
http://dx.doi.org/10.4134/JKMS.j190356

CONTINUOUS DATA ASSIMILATION FOR THE THREE-DIMENSIONAL SIMPLIFIED BARDINA MODEL UTILIZING MEASUREMENTS OF ONLY TWO COMPONENTS OF THE VELOCITY FIELD  

Anh, Cung The (Department of Mathematics Hanoi National University of Education)
Bach, Bui Huy (Department of Mathematics Hanoi National University of Education)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.1, 2021 , pp. 1-28 More about this Journal
Abstract
We study a continuous data assimilation algorithm for the three-dimensional simplified Bardina model utilizing measurements of only two components of the velocity field. Under suitable conditions on the relaxation (nudging) parameter and the spatial mesh resolution, we obtain an asymptotic in time estimate of the difference between the approximating solution and the unknown reference solution corresponding to the measurements, in an appropriate norm, which shows exponential convergence up to zero.
Keywords
3D simplified Bardina model; continuous data assimilation; interpolant; coarse measurements of velocity; nudging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. A. F. Albanez and M. J. Benvenutti, Continuous data assimilation algorithm for simplified Bardina model, Evol. Equ. Control Theory 7 (2018), no. 1, 33-52. https://doi.org/10.3934/eect.2018002   DOI
2 D. A. F. Albanez, H. J. Nussenzveig Lopes, and E. S. Titi, Continuous data assimilation for the three-dimensional Navier-Stokes-α model, Asymptot. Anal. 97 (2016), no. 1-2, 139-164. https://doi.org/10.3233/ASY-151351   DOI
3 C. T. Anh and B. H. Bach, Discrete data assimilation algorithm for the three-dimensional Leray-α model, Bull. Pol. Acad. Sci. Math. 66 (2018), no. 2, 143-156. https://doi.org/10.4064/ba8162-11-2018   DOI
4 A. Azouani, E. Olson, and E. S. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci. 24 (2014), no. 2, 277-304. https://doi.org/10.1007/s00332-013-9189-y   DOI
5 J. Bardina, J. H. Ferziger, and W. C. Reynolds, Improved subgrid scale models for large eddy simulation, American Institute of Aeronautics and Astronautics Paper 80 (1980), 80-1357.
6 A. Biswas, J. Hudson, A. Larios, and Y. Pei, Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields, Asymptot. Anal. 108 (2018), no. 1-2, 1-43.
7 A. Biswas and V. R. Martinez, Higher-order synchronization for a data assimilation algorithm for the 2D Navier-Stokes equations, Nonlinear Anal. Real World Appl. 35 (2017), 132-157. https://doi.org/10.1016/j.nonrwa.2016.10.005   DOI
8 J. Blocher, V. R. Martinez, and E. Olson, Data assimilation using noisy time-averaged measurements, Phys. D 376/377 (2018), 49-59. https://doi.org/10.1016/j.physd.2017.12.004   DOI
9 Y. Cao, E. M. Lunasin, and E. S. Titi, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci. 4 (2006), no. 4, 823-848. http://projecteuclid.org/euclid.cms/1175797613   DOI
10 P. Constantin and C. Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.
11 A. Farhat, E. Lunasin, and E. S. Titi, Data assimilation algorithm for 3D Benard convection in porous media employing only temperature measurements, J. Math. Anal. Appl. 438 (2016), no. 1, 492-506. https://doi.org/10.1016/j.jmaa.2016.01.072   DOI
12 A. Farhat, E. Lunasin, and E. S. Titi, Abridged continuous data assimilation for the 2D Navier-Stokes equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech. 18 (2016), no. 1, 1-23. https://doi.org/10.1007/s00021-015-0225-6   DOI
13 A. Farhat, E. Lunasin, and E. S. Titi, Continuous data assimilation for a 2D Benard convection system through horizontal velocity measurements alone, J. Nonlinear Sci. 27 (2017), no. 3, 1065-1087. https://doi.org/10.1007/s00332-017-9360-y   DOI
14 A. Farhat, E. Lunasin, and E. S. Titi, A data assimilation algorithm: the paradigm of the 3D Leray-α model of turbulence, in Partial differential equations arising from physics and geometry, 253-273, London Math. Soc. Lecture Note Ser., 450, Cambridge Univ. Press, Cambridge, 2019.
15 C. Foias, C. F. Mondaini, and E. S. Titi, A discrete data assimilation scheme for the solutions of the two-dimensional Navier-Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst. 15 (2016), no. 4, 2109-2142. https://doi.org/10.1137/16M1076526   DOI
16 P. Korn, Data assimilation for the Navier-Stokes-α equations, Phys. D 238 (2009), no. 18, 1957-1974. https://doi.org/10.1016/j.physd.2009.07.008   DOI
17 K. Hayden, E. Olson, and E. S. Titi, Discrete data assimilation in the Lorenz and 2D Navier-Stokes equations, Phys. D 240 (2011), no. 18, 1416-1425. https://doi.org/10.1016/j.physd.2011.04.021   DOI
18 Y. Cao and E. S. Titi, On the rate of convergence of the two-dimensional α-models of turbulence to the Navier-Stokes equations, Numer. Funct. Anal. Optim. 30 (2009), no. 11-12, 1231-1271. https://doi.org/10.1080/01630560903439189   DOI
19 M. Holst, E. Lunasin, and G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci. 20 (2010), no. 5, 523-567. https://doi.org/10.1007/s00332-010-9066-x   DOI
20 M. S. Jolly, V. R. Martinez, and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Adv. Nonlinear Stud. 17 (2017), no. 1, 167-192. https://doi.org/10.1515/ans-2016-6019   DOI
21 W. Layton and R. Lewandowski, On a well-posed turbulence model, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 1, 111-128. https://doi.org/10.3934/dcdsb.2006.6.111   DOI
22 P. A. Markowich, E. S. Titi, and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity 29 (2016), no. 4, 1292-1328. https://doi.org/10.1088/0951-7715/29/4/1292   DOI
23 L. Oljaca, J. Brocker, and T. Kuna, Almost sure error bounds for data assimilation in dissipative systems with unbounded observation noise, SIAM J. Appl. Dyn. Syst. 17 (2018), no. 4, 2882-2914. https://doi.org/10.1137/17M1162305   DOI
24 E. Olson and E. S. Titi, Determining modes for continuous data assimilation in 2D turbulence, J. Statist. Phys. 113 (2003), no. 5-6, 799-840. https://doi.org/10.1023/A:1027312703252   DOI
25 Y. Zhou and J. Fan, Global well-posedness of a Bardina model, Appl. Math. Lett. 24 (2011), no. 5, 605-607. https://doi.org/10.1016/j.aml.2010.11.019   DOI
26 J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1007/978-94-010-0732-0
27 R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, second edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. https://doi.org/10.1137/1.9781611970050   DOI