Browse > Article
http://dx.doi.org/10.4134/JKMS.j190380

A NUMERICAL PROPERTY OF HILBERT FUNCTIONS AND LEX SEGMENT IDEALS  

Favacchio, Giuseppe (Dipartimento di Matematica e Informatica Universita degli Studi di Catania)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.3, 2020 , pp. 777-792 More about this Journal
Abstract
We introduce the fractal expansions, sequences of integers associated to a number. We show that these sequences characterize the O-sequences and encode some information about lex segment ideals. Moreover, we introduce numerical functions called fractal functions, and we use them to solve the open problem of the classification of the Hilbert functions of any bigraded algebra.
Keywords
Hilbert function; lex segment ideal; bigraded algebra;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. Abbott, A. M. Bigatti, and L. Robbiano, CoCoA: a system for doing computations in commutative algebra, Available at http://cocoa.dima.unige.it
2 A. Aramova, K. Crona, and E. De Negri, Bigeneric initial ideals, diagonal subalgebras and bigraded Hilbert functions, J. Pure Appl. Algebra 150 (2000), no. 3, 215-235. https://doi.org/10.1016/S0022-4049(99)00100-0   DOI
3 W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
4 S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), no. 1, 1-25. https://doi.org/10.1016/0021-8693(90)90237-I   DOI
5 G. Favacchio, The Hilbert function of bigraded Algebras in k[$P1\;{\times}\;P1$], To appear in J. Commut. Algebra Forthcoming (2019). https://projecteuclid.org/euclid.jca/1523433691
6 G. Favacchio and E. Guardo, The minimal free resolution of fat almost complete intersections in $\mathbb{P}^1\;{\times}\;\mathbb{P}^1$, Canad. J. Math. 69 (2017), no. 6, 1274-1291. https://doi.org/10.4153/CJM-2016-040-4   DOI
7 G. Favacchio and E. Guardo, On the Betti numbers of three fat points in $\mathbb{P}^1\;{\times}\;\mathbb{P}^1$, J. Korean Math. Soc. 56 (2019), no. 3, 751-766. https://doi.org/10.4134/JKMS.j180385   DOI
8 G. Favacchio, E. Guardo, and J. Migliore, On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces, Proc. Amer. Math. Soc. 146 (2018), no. 7, 2811-2825. https://doi.org/10.1090/proc/13981   DOI
9 G. Favacchio, E. Guardo, and B. Picone, Special arrangements of lines: codimension 2 ACM varieties in $\mathbb{P}^1\;{\times}\;\mathbb{P}^1\;{\times}\;\mathbb{P}^1$, J. Algebra Appl. 18 (2019), no. 4, 1950073, 22 pp. https://doi.org/10.1142/S0219498819500737
10 G. Favacchio and J. Migliore, Multiprojective spaces and the arithmetically Cohen-Macaulay property, Math. Proc. Cambridge Philos. Soc. 166 (2019), no. 3, 583-597. https://doi.org/10.1017/S0305004118000142   DOI
11 R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57-83. https://doi.org/10.1016/0001-8708(78)90045-2   DOI
12 E. Guardo and A. Van Tuyl, Arithmetically Cohen-Macaulay sets of points in $\mathbb{P}^1\;{\times}\;\mathbb{P}^1$, SpringerBriefs in Mathematics, Springer, Cham, 2015.
13 J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011. https://doi.org/10.1007/978-0-85729-106-6
14 C. Kimberling, Fractal sequences and interspersions, Ars Combin. 45 (1997), 157-168.
15 F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. (2) 26 (1927), 531-555. https://doi.org/10.1112/plms/s2-26.1.531   DOI
16 I. Peeva and M. Stillman, Open problems on syzygies and Hilbert functions, J. Commut. Algebra 1 (2009), no. 1, 159-195. https://doi.org/10.1216/JCA-2009-1-1-159   DOI
17 A. Van Tuyl, The border of the Hilbert function of a set of points in $\mathbb{P}^{n_1}\;{\times}\;{\cdot}{\cdot}{\cdot}\;{\times}\;\mathbb{P}^{n_k}$, J. Pure Appl. Algebra 176 (2002), no. 2-3, 223-247. https://doi.org/10.1016/S0022-4049(02)00072-5   DOI
18 A. Van Tuyl, The Hilbert functions of ACM sets of points in $\mathbb{P}^{n_1}\;{\times}\;{\cdot}{\cdot}{\cdot}\;{\times}\;\mathbb{P}^{n_k}$, J. Algebra 264 (2003), no. 2, 420-441. https://doi.org/10.1016/S0021-8693(03)00232-1   DOI