Browse > Article
http://dx.doi.org/10.4134/JKMS.j180762

COHOMOLOGY RING OF THE TENSOR PRODUCT OF POISSON ALGEBRAS  

Zhu, Can (College of Science University of Shanghai for Science and Technology)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.1, 2020 , pp. 113-129 More about this Journal
Abstract
In this paper, we study the Poisson cohomology ring of the tensor product of Poisson algebras. Explicitly, it is proved that the Poisson cohomology ring of tensor product of two Poisson algebras is isomorphic to the tensor product of the respective Poisson cohomology ring of these two Poisson algebras as Gerstenhaber algebras.
Keywords
Poisson algebra; tensor product; Gerstenhaber algebra;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59-103. https://doi.org/10.2307/1970484   DOI
2 V. P. Cherkashin, Tensor products of Poisson algebras, Math. Notes 54 (1993), no. 3-4, 968-974 (1994); translated from Mat. Zametki 54 (1993), no. 3, 141-151, 160. https://doi.org/10.1007/BF01209563   DOI
3 P. Deligne and J. S. Milne, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer-Verlag, Berlin, 1982.
4 V. G. Drinfel'd, Quantum groups, J. Soviet Math. 41 (1988), no. 2, 898-915; translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), Differentsial'naya Geometriya, Gruppy Li i Mekh. VIII, 18-49, 193. https://doi.org/ 10.1007/BF01247086   DOI
5 C.-H. Eu and T. Schedler, Calabi-Yau Frobenius algebras, J. Algebra 321 (2009), no. 3, 774-815. https://doi.org/10.1016/j.jalgebra.2008.11.003   DOI
6 J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57-113. https://doi.org/10.1515/crll.1990.408.57
7 N. Kowalzig and U. Krahmer, Batalin-Vilkovisky structures on Ext and Tor, J. Reine Angew. Math. 697 (2014), 159-219.
8 T. Lambre, G. Zhou, and A. Zimmermann, The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra, J. Algebra 446 (2016), 103-131. https://doi.org/10.1016/j.jalgebra.2015.09.018   DOI
9 C. Laurent-Gengoux, A. Pichereau, and P. Vanhaecke, Poisson structures, Grundlehren der Mathematischen Wissenschaften, 347, Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-31090-4
10 V. Ginzburg, Calabi-Yau algebras, arXiv: 0612139 [math. AG].
11 J. Le and G. Zhou, On the Hochschild cohomology ring of tensor products of algebras, J. Pure Appl. Algebra 218 (2014), no. 8, 1463-1477. https://doi.org/10.1016/j.jpaa.2013.11.029   DOI
12 C. Zhu, F. Van Oystaeyen, and Y. Zhang, On (co)homology of Frobenius Poisson algebras, J. K-Theory 14 (2014), no. 2, 371-386. https://doi.org/10.1017/is014007026jkt276   DOI
13 L. Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory 32 (2004), no. 3, 231-251. https://doi.org/10.1007/s10977-004-0480-4   DOI
14 T. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2351-2379.   DOI
15 P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), no. 3, 545-560. https://doi.org/10.1007/s002200050540   DOI
16 A. Lichnerowicz, Les varietes de Poisson et leurs algebres de Lie associees, J. Differential Geometry 12 (1977), no. 2, 253-300. http://projecteuclid.org/euclid.jdg/1214433987   DOI