Browse > Article
http://dx.doi.org/10.4134/JKMS.j180785

EXISTENCE OF WEAK SOLUTIONS TO A CLASS OF SCHRÖDINGER TYPE EQUATIONS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝN  

Kim, Jae-Myoung (Department of Mathematics Education Andong National University)
Kim, Yun-Ho (Department of Mathematics Education Sangmyung University)
Lee, Jongrak (Department of Mathematics, Ewha Womans University)
Publication Information
Journal of the Korean Mathematical Society / v.56, no.6, 2019 , pp. 1529-1560 More about this Journal
Abstract
We are concerned with the following elliptic equations: $$(-{\Delta})^s_pu+V (x){\mid}u{\mid}^{p-2}u={\lambda}g(x,u){\text{ in }}{\mathbb{R}}^N$$, where $(-{\Delta})_p^s$ is the fractional p-Laplacian operator with 0 < s < 1 < p < $+{\infty}$, sp < N, the potential function $V:{\mathbb{R}}^N{\rightarrow}(0,{\infty})$ is a continuous potential function, and $g:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ satisfies a $Carath{\acute{e}}odory$ condition. We show the existence of at least one weak solution for the problem above without the Ambrosetti and Rabinowitz condition. Moreover, we give a positive interval of the parameter ${\lambda}$ for which the problem admits at least one nontrivial weak solution when the nonlinearity g has the subcritical growth condition.
Keywords
fractional p-Laplacian; variational methods; critical point theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Bonanno and A. Chinni, Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent, J. Math. Anal. Appl. 418 (2014), no. 2, 812-827. https://doi.org/10.1016/j.jmaa.2014.04.016   DOI
2 G. Bonanno, G. D'Agui, and P. Winkert, Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory Appl. 1 (2016), no. 1, 125-143.
3 L. Brasco, E. Parini, and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst. 36 (2016), no. 4, 1813-1845. https://doi.org/10.3934/dcds.2016.36.1813   DOI
4 L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear partial differential equations, 37-52, Abel Symp., 7, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-25361-4_3
5 X. Chang and Z.-Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations 256 (2014), no. 8, 2965-2992. https://doi.org/10.1016/j.jde.2014.01.027   DOI
6 F. Colasuonno, P. Pucci, and C. Varga, Multiple solutions for an eigenvalue problem involving p-Laplacian type operators, Nonlinear Anal. 75 (2012), no. 12, 4496-4512. https://doi.org/10.1016/j.na.2011.09.048   DOI
7 P. Drabek, A. Kufner, and F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, Walter de Gruyter & Co., Berlin, 1997.
8 G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrodinger equation in ${\mathbb{R}^N$, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Art. 12, 22 pp. https://doi.org/10.1007/s00030-016-0355-4   DOI
9 B. Ge, Multiple solutions of nonlinear Schrodinger equation with the fractional Laplacian, Nonlinear Anal. Real World Appl. 30 (2016), 236-247. https://doi.org/10.1016/j.nonrwa.2016.01.003   DOI
10 G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), no. 3, 1005-1028. https://doi.org/10.1137/070698592   DOI
11 A. Iannizzotto, S. Liu, K. Perera, and M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2016), no. 2, 101-125. https://doi.org/10.1515/acv-2014-0024   DOI
12 L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ${\mathbb{R}^N$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787-809. https://doi.org/10.1017/S0308210500013147   DOI
13 N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2   DOI
14 S. Liu, On ground states of superlinear p-Laplacian equations in ${\mathbb{R}^N$, J. Math. Anal. Appl. 361 (2010), no. 1, 48-58. https://doi.org/10.1016/j.jmaa.2009.09.016   DOI
15 J. Lee and Y.-H. Kim, Multiplicity results for nonlinear Neumann boundary value problems involving p-Laplace type operators, Bound. Value Probl. 2016 (2016), Paper No. 95, 25 pp. https://doi.org/10.1186/s13661-016-0603-x   DOI
16 F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Transl. from the 2007 French original by R. Erne. Universitext. London: Springer, 2012.
17 R. Lehrer, L. A. Maia, and M. Squassina, On fractional p-Laplacian problems with weight, Differential Integral Equations 28 (2015), no. 1-2, 15-28. http://projecteuclid.org/euclid.die/1418310419
18 G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal. 72 (2010), no. 12, 4602-4613. https://doi.org/10.1016/j.na.2010.02.037   DOI
19 X. Lin and X. H. Tang, Existence of infinitely many solutions for p-Laplacian equations in ${\mathbb{R}^N$, Nonlinear Anal. 92 (2013), 72-81. https://doi.org/10.1016/j.na.2013.06.011   DOI
20 S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal. 73 (2010), no. 3, 788-795. https://doi.org/10.1016/j.na.2010.04.016   DOI
21 S. Liu and S. J. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Math. Sinica (Chin. Ser.) 46 (2003), no. 4, 625-630.   DOI
22 R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77 pp. https://doi.org/10.1016/S0370-1573(00)00070-3
23 R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity, in Recent trends in nonlinear partial differential equations. II. Stationary problems, 317-340, Contemp. Math., 595, Amer. Math. Soc., Providence, RI, 2013. https://doi.org/10.1090/conm/595/11809   DOI
24 R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, R161-R208. https://doi.org/10.1088/0305-4470/37/31/R01   DOI
25 O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008), no. 12, 3628-3638. https://doi.org/10.1016/j.jde.2008.02.035   DOI
26 E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004   DOI
27 K. Perera, M. Squassina, and Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr. 289 (2016), no. 2-3, 332-342. https://doi.org/10.1002/mana.201400259   DOI
28 K. Perera, M. Squassina, and Y. Yang, Critical fractional p-Laplacian problems with possibly vanishing potentials, J. Math. Anal. Appl. 433 (2016), no. 2, 818-831. https://doi.org/10.1016/j.jmaa.2015.08.024   DOI
29 Z. Tan and F. Fang, On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal. 75 (2012), no. 9, 3902-3915. https://doi.org/10.1016/j.na.2012.02.010   DOI
30 K. Teng, Multiple solutions for a class of fractional Schrodinger equations in ${\mathbb{R}^N$, Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008   DOI
31 J. Xu, Z. Wei, and W. Dong, Existence of weak solutions for a fractional Schrodinger equation, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), no. 1-3, 1215-1222. https://doi.org/10.1016/j.cnsns.2014.06.051   DOI
32 C. E. Torres Ledesma, Existence and symmetry result for fractional p-Laplacian in ${\mathbb{R}^n$, Commun. Pure Appl. Anal. 16 (2017), no. 1, 99-113. https://doi.org/10.3934/cpaa.2017004   DOI
33 Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 95-124. https://doi.org/10.1007/s00526-013-0706-5   DOI
34 M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1
35 A. Zang, p(x)-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl. 337 (2008), no. 1, 547-555. https://doi.org/10.1016/j.jmaa.2007.04.007   DOI
36 B. Zhang and M. Ferrara, Multiplicity of solutions for a class of superlinear non-local fractional equations, Complex Var. Elliptic Equ. 60 (2015), no. 5, 583-595. https://doi.org/10.1080/17476933.2014.959005   DOI
37 H. Zhang, J. Xu, and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrodinger equations in ${\mathbb{R}^N$, J. Math. Phys. 56 (2015), no. 9, 091502, 13 pp. https://doi.org/10.1063/1.4929660
38 Y. Zhang, X. Tang and J. Zhang, Existence of infinitely many solutions for fractional p-Laplacian equations with sign-changing potential, Electron. J. Differential Equations 2017 (2017), Paper No. 208, 14 pp.
39 C.-K. Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl. 205 (1997), no. 1, 239-250. https://doi.org/10.1006/jmaa.1996.5168   DOI
40 W. Zou, Variant fountain theorems and their applications, Manuscripta Math. 104(2001), no. 3, 343-358. https://doi.org/10.1007/s002290170032   DOI
41 J. Bertoin, Levy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996.
42 R. A. Adams and J. J. F. Fournier, Sobolev Spaces, second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.
43 C. O. Alves and S. Liu, On superlinear p(x)-Laplacian equations in $\mathbb{R}^N$, Nonlinear Anal. 73 (2010), no. 8, 2566-2579. https://doi.org/10.1016/j.na.2010.06.033   DOI
44 A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381.   DOI
45 G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations 255 (2013), no. 8, 2340-2362. https://doi.org/10.1016/j.jde.2013.06.016   DOI
46 B. Barrios, E. Colorado, A. De Pablo, and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162. https://doi.org/10.1016/j.jde.2012.02.023   DOI
47 G. Bonanno and A. Chinni, Discontinuous elliptic problems involving the p(x)-Laplacian, Math. Nachr. 284 (2011), no. 5-6, 639-652. https://doi.org/10.1002/mana.200810232   DOI
48 Z. Binlin, G. Molica Bisci, and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), no. 7, 2247-2264. https://doi.org/10.1088/0951-7715/28/7/2247   DOI
49 C. Bjorland, L. Caffarelli, and A. Figalli, Non-local gradient dependent operators, Adv. Math. 230 (2012), no. 4-6, 1859-1894. https://doi.org/10.1016/j.aim.2012.03.032   DOI
50 G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012), no. 5, 2992-3007. https://doi.org/10.1016/j.na.2011.12.003   DOI