Browse > Article
http://dx.doi.org/10.4134/JKMS.j180747

RIGIDITY CHARACTERIZATION OF COMPACT RICCI SOLITONS  

Li, Fengjiang (Department of Mathematics East China Normal University)
Zhou, Jian (Department of Mathematics Yunnan Normal University)
Publication Information
Journal of the Korean Mathematical Society / v.56, no.6, 2019 , pp. 1475-1488 More about this Journal
Abstract
In this paper, we firstly define the Ricci mean value along the gradient vector field of the Ricci potential function and show that it is non-negative on a compact Ricci soliton. Furthermore a Ricci soliton is Einstein if and only if its Ricci mean value is vanishing. Finally, we obtain a compact Ricci soliton $(M^n,g)(n{\geq}3)$ is Einstein if its Weyl curvature tensor and the Kulkarni-Nomizu product of Ricci curvature are orthogonal.
Keywords
Ricci soliton; Einstein manifold; Ricci mean value; Weyl conformal curvatue tensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z.-H. Zhang, Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009), no. 1, 189-200. https://doi.org/10.2140/pjm.2009.242.189   DOI
2 G. Perelman, The entropy formula for the Ricci ow and its geometric applications, Mathematics 95 (2002), 1-39.
3 C. Bohm and B. Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008), no. 3, 1079-1097. https://doi.org/10.4007/annals. 2008.167.1079   DOI
4 X. Cao, B. Wang, and Z. Zhang, On locally conformally flat gradient shrinking Ricci solitons, Commun. Contemp. Math. 13 (2011), no. 2, 269-282. https://doi.org/10.1142/S0219199711004191   DOI
5 H.-D. Cao, Existence of gradient Kahler-Ricci solitons, in Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), 1-16, A K Peters, Wellesley, MA, 1996.
6 H.-D. Cao and Q. Chen, On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2377-2391. https://doi.org/10.1090/S0002-9947-2011-05446-2   DOI
7 X. Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal. 17 (2007), no. 3, 425-433. https://doi.org/10.1007/BF02922090   DOI
8 X. Chen, P. Lu, and G. Tian, A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3391-3393. https://doi.org/10.1090/S0002-9939-06-08360-2   DOI
9 S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195-204. https://doi.org/10.1007/BF01425237   DOI
10 B. Chow, S.-C. Chu, C. Guenther, J. Isenber, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci Flow: Techniques and Applications. Part I, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, 2007.
11 R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922   DOI
12 B. Chow and D. Knopf, The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/surv/110
13 A. Derdzinski, Compact Ricci solitons, Work in progress. Last updated on December 4 2009, 1-57, inprint.
14 M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345-367. https://doi.org/10.1007/s00229-008-0210-y   DOI
15 Z. Guo, Scalar curvature of self-shrinker, J. Math. Soc. Japan 70 (2018), no. 3, 1103-1110. https://doi.org/10.2969/jmsj/73427342   DOI
16 D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977.
17 R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419   DOI
18 R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993), no. 1, 225-243. http://projecteuclid.org/euclid.jdg/1214453430   DOI
19 E. Hopf, Elementare Bemerkungen uber die Losungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzungsberichte Akad. Berlin, (1927), 147-152.
20 T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4, 301-307. https://doi.org/10.1016/0926-2245(93)90008-O   DOI
21 N. Koiso, On rotationally symmetric Hamilton's equation for Kahler-Einstein metrics, in Recent topics in differential and analytic geometry, 327-337, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990.   DOI
22 M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213. https://doi.org/10.2307/2373587   DOI
23 A. Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010), 125-153. https://doi.org/10.1515/CRELLE.2010.062
24 L. Ni and N. Wallach, On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008), no. 5, 941-955. https://doi.org/10.4310/MRL.2008.v15.n5.a9   DOI