Browse > Article
http://dx.doi.org/10.4134/JKMS.j180297

LIOUVILLE THEOREMS FOR GENERALIZED SYMPHONIC MAPS  

Feng, Shuxiang (School of Mathematics and Statistics Southwest University)
Han, Yingbo (School of Mathematics and Statistics Xinyang Normal University)
Publication Information
Journal of the Korean Mathematical Society / v.56, no.3, 2019 , pp. 669-688 More about this Journal
Abstract
In this paper, we introduce the notion of the generalized symphonic map with respect to the functional ${\Phi}_{\varepsilon}$. Then we use the stress-energy tensor to obtain some monotonicity formulas and some Liouville results for these maps. We also obtain some Liouville type results by assuming some conditions on the asymptotic behavior of the maps at infinity.
Keywords
the generalized symphonic map; monotonicity formula; Liouville theorems;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Wang and L. Zhao, Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds, Nonlinear Anal. 130 (2016), 1-17.   DOI
2 M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential Integral Equations 7 (1994), no. 5-6, 1613-1624.
3 P.Wang and X.Wang, The geometric properties of harmonic function on 2-dimensional Riemannian manifolds, Nonlinear Anal. 103 (2014), 2-8.   DOI
4 M.-C. Hong, Asymptotic behavior for minimizers of a Ginzburg-Landau-type functional in higher dimensions associated with n-harmonic maps, Adv. Differential Equations 1 (1996), no. 4, 611-634.
5 S. Asserda, Liouville-type results for stationary maps of a class of functional related to pullback metrics, Nonlinear Anal. 75 (2012), no. 8, 3480-3492.   DOI
6 P. Baird, Stress-energy tensors and the Lichnerowicz Laplacian, J. Geom. Phys. 58 (2008), no. 10, 1329-1342.   DOI
7 Z. R. Jin, Liouville theorems for harmonic maps, Invent. Math. 108 (1992), no. 1, 1-10.   DOI
8 J. M. Kosterlitz and D. J. Thouless, Two dimensional physics, In: Brewer, D.F.(ed.) Progress in low temperature physics, Vol. VIIB. Amsterdam: North-Holland 1978.
9 S. Kawai and N. Nakauchi, Some results for stationary maps of a functional related to pullback metrics, Nonlinear Anal. 74 (2011), no. 6, 2284-2295.   DOI
10 S. Kawai and N. Nakauchi, Stability of stationary maps of a functional related to pullbacks of metrics, Differential Geom. Appl. 44 (2016), 161-177.   DOI
11 Y. Lei, Singularity analysis of a p-Ginzburg-Landau type minimizer, Bull. Sci. Math. 134 (2010), no. 1, 97-115.   DOI
12 N. Nakauchi, A variational problem related to conformal maps, Osaka J. Math. 48 (2011), no. 3, 719-741.
13 N. Nakauchi and Y. Takenaka, A variational problem for pullback metrics, Ric. Mat. 60 (2011), no. 2, 219-235.   DOI
14 H. C. J. Sealey, Some conditions ensuring the vanishing of harmonic differential forms with applications to harmonic maps and Yang-Mills theory, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 3, 441-452.   DOI
15 D. R. Nelson, Phase transitions and critical phenomena. Vol. 7, Academic Press, Inc., London, 1983.
16 S. Pigola, M. Rigoli, and A. G. Setti, Vanishing and finiteness results in geometric analysis, Progress in Mathematics, 266, Birkhauser Verlag, Basel, 2008.
17 D. Saint-James, G. Sarrna, and E. J. Thoma, Type II Superconductivity, New York, Pergamon Press, 1969.
18 R. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), no. 3, 333-341.   DOI
19 S. Y. Cheng, Liouville theorem for harmonic maps, in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), 147-151, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980.
20 H. Brezis, F. Merle, and T. Riviere, Quantization effects for $-{\Delta}u\;=\;u(1-\left|u\right|^2)$ in $R^2$, Arch. Rational Mech. Anal. 126 (1994), no. 1, 35-58.   DOI
21 T. Chong, B. Cheng, Y. X. Dong, and W. Zhang, Liouville theorems for critical points of the p-Ginzberg-Landau type functional, arXiv: 1610.06301v1.
22 F. Bethuel, H. Brezis, and F. Helein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), no. 2, 123-148.   DOI
23 Y. Dong and S. W. Wei, On vanishing theorems for vector bundle valued p-forms and their applications, Comm. Math. Phys. 304 (2011), no. 2, 329-368.   DOI
24 F. Bethuel, H. Brezis, and F. Helein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhauser Boston, Inc., Boston, MA, 1994.
25 Y. Dong, Monotonicity formulae and holomorphicity of harmonic maps between Kahler manifolds, Proc. Lond. Math. Soc. (3) 107 (2013), no. 6, 1221-1260.   DOI
26 Y. Dong, H. Lin, and G. Yang, Liouville theorems for F-harmonic maps and their applications, Results Math. 69 (2016), no. 1-2, 105-127.   DOI
27 J. F. Escobar and A. Freire, The spectrum of the Laplacian of manifolds of positive curvature, Duke Math. J. 65 (1992), no. 1, 1-21.   DOI
28 R. E. Greene and H. Wu, Function theory on manifolds which posses pole, Lecture Notes in Mathematics, 699, Springer-veriag, Berlin, Heidelberg, New York, 1979.
29 Y. Han, S. Feng, and W. Zhang, Liouville theorems for weakly F-stationary maps with potential, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 435-450.
30 Y. B. Han, Y. Li, Y. B. Ren, and S. W. Wei, New comparison theorems in Riemannian geometry, Bull. Inst. Math. Acad. Sin. (N.S.) 9 (2014), no. 2, 163-186.
31 Y. Han and S. Feng, Monotonicity formulas and the stability of F-stationary maps with potential, Houston J. Math. 40 (2014), no. 3, 681-713.
32 S. Hildebrandt, Liouville theorems for harmonic mappings, and an approach to Bernstein theorems, in Seminar on Differential Geometry, 107-131, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982.