1 |
J. Ahn and H. Jung, Determination of all subfields of cyclotomic function fields with divisor class number two, Commun. Korean Math. Soc. 22 (2007), no. 2, 163-171.
DOI
|
2 |
Y. Aubry, Class number in totally imaginary extensions of totally real function fields, in Finite fields and applications (Glasgow, 1995), 23-29, London Math. Soc. Lecture Note Ser., 233, Cambridge Univ. Press, Cambridge, 1996.
|
3 |
S. Bae and P.-L. Kang, Class numbers of cyclotomic function fields, Acta Arith. 102 (2002), no. 3, 251-259.
DOI
|
4 |
L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), no. 2, 137-168.
DOI
|
5 |
D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91.
DOI
|
6 |
H. Jung and J. Ahn, Determination of all subfields of cyclotomic function fields with genus one, Commun. Korean Math. Soc. 20 (2005), no. 2, 259-273.
DOI
|
7 |
H. Jung and J. Ahn, Divisor class number one problem for abelian extensions over rational function fields, J. Algebra 310 (2007), no. 1, 1-14.
DOI
|
8 |
M. Kida and N. Murabayashi, Cyclotomic function fields with divisor class number one, Tokyo J. Math. 14 (1991), no. 1, 45-56.
DOI
|
9 |
D. Le Brigand, Quadratic algebraic function fields with ideal class number two, in Arithmetic, geometry and coding theory (Luminy, 1993), 105-126, de Gruyter, Berlin, 1996.
|
10 |
M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), no. 4, 365-378.
|
11 |
M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer-Verlag, New York, 2002.
|
12 |
L. C. Washington, Introduction to Cyclotomic Fields, second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
|
13 |
S. Semirat, Class number one problem for imaginary function fields: the cyclic prime power case, J. Number Theory 84 (2000), no. 1, 166-183.
DOI
|
14 |
S. Semirat, Cyclotomic function fields with ideal class number one, J. Algebra 236 (2001), no. 1, 376-395.
DOI
|
15 |
H. Tore, Class numbers of algebraic function fields, Phd Thesis, Hacettepe University, Ankara, 1983.
|
16 |
J. Q. Zhao, Class number relation between type (l, l, ... , l) function fields over (T) and their subfields, Sci. China Ser. A 38 (1995), no. 6, 674-682.
|