1 |
M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000), no. 1, 7-25.
|
2 |
S. Kwon, Ihara zeta function of dumbbell graphs, preprint, available on personal website, http://sites.google.com/site/skwonmath.
|
3 |
S. Northshield, Cogrowth of regular graphs, Proc. Amer. Math. Soc. 116 (1992), no. 1, 203-205.
DOI
|
4 |
S. Northshield, Cogrowth of arbitrary graphs, in Random walks and geometry, 501-513, Walter de Gruyter, Berlin, 2004.
|
5 |
F. Paulin, On the critical exponent of a discrete group of hyperbolic isometries, Differential Geom. Appl. 7 (1997), no. 3, 231-236.
DOI
|
6 |
J.-P. Serre, Trees, translated from the French original by John Stillwell, corrected 2nd printing of the 1980 English translation, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
|
7 |
A. Terras, Zeta Functions of Graphs, Cambridge Studies in Advanced Mathematics, 128, Cambridge University Press, Cambridge, 2011.
|
8 |
H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), no. 6, 717-797.
DOI
|
9 |
H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), no. 1-2, 3-47.
DOI
|
10 |
H. Bass and R. Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990), no. 4, 843-902.
DOI
|
11 |
Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
DOI
|
12 |
R. Coulon, F. Dal'Bo, and A. Sambusetti, Growth gap in hyperbolic groups and amenability, preprint, arXiv:1709:07287.
|