1 |
N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc. 146 (2018), no. 3, 1047-1057.
DOI
|
2 |
R. M. Corless and S. Yu. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423.
DOI
|
3 |
P. E. Kloeden and J. Ombach, Hyperbolic homeomorphisms and bishadowing, Ann. Polon. Math. 65 (1997), no. 2, 171-177.
DOI
|
4 |
K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67 (2003), no. 1, 15-26.
DOI
|
5 |
K. Lee and K. Sakai, Various shadowing properties and their equivalence, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 533-540.
DOI
|
6 |
J. Lewowicz and M. Cerminara, Some open problems concerning expansive systems, Rend. Istit. Mat. Univ. Trieste 42 (2010), 129-141.
|
7 |
T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
|
8 |
A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst. 29 (2014), no. 3, 337-351.
DOI
|
9 |
S. Yu. Pilyugin, Inverse shadowing in group actions, Dyn. Syst. 32 (2017), no. 2, 198-210.
DOI
|
10 |
C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), no. 3, 425-437.
DOI
|
11 |
P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 231-244, Lecture Notes in Math., 668, Springer, Berlin, 1978.
|
12 |
K. Yano, Topologically stable homeomorphisms of the circle, Nagoya Math. J. 79 (1980), 145-149.
DOI
|