Browse > Article
http://dx.doi.org/10.4134/JKMS.j170797

ON S-COHERENCE  

Bennis, Driss (Centre de Recherche de Mathematiques et Applications de Rabat (CeReMAR) Faculty of Sciences Mohammed V University in Rabat)
El Hajoui, Mohammed (Centre de Recherche de Mathematiques et Applications de Rabat (CeReMAR) Faculty of Sciences Mohammed V University in Rabat)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.6, 2018 , pp. 1499-1512 More about this Journal
Abstract
Recently, Anderson and Dumitrescu's S-finiteness has attracted the interest of several authors. In this paper, we introduce the notions of S-finitely presented modules and then of S-coherent rings which are S-versions of finitely presented modules and coherent rings, respectively. Among other results, we give an S-version of the classical Chase's characterization of coherent rings. We end the paper with a brief discussion on other S-versions of finitely presented modules and coherent rings. We prove that these last S-versions can be characterized in terms of localization.
Keywords
S-finite; S-finitely presented; S-coherent modules; S-coherence rings;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Kaplansky, Projective modules, Ann. of Math (2) 68 (1958), 372-377.   DOI
2 H. Kim, M. O. Kim, and J. W. Lim, On S-strong Mori domains, J. Algebra 416 (2014), 314-332.
3 J. W. Lim and D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), no. 6, 1075-1080.   DOI
4 J. W. Lim and D. Y. Oh, S-Noetherian properties of composite ring extensions, Comm. Algebra 43 (2015), no. 7, 2820-2829.   DOI
5 Z. Liu, On S-Noetherian rings, Arch. Math. (Brno) 43 (2007), no. 1, 55-60.
6 W. Wm. McGovern, G. Puninski, and P. Rothmaler, When every projective module is a direct sum of finitely generated modules, J. Algebra 315 (2007), no. 1, 454-481.   DOI
7 H. Ahmed and H. Sana, S-Noetherian rings of the forms A[X] and A[[X]], Comm. Algebra 43 (2015), no. 9, 3848-3856.   DOI
8 H. Ahmed and H. Sana, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra 44 (2016), no. 5, 1941-1951.
9 D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416.   DOI
10 D. D. Anderson, D. J. Kwak, and M. Zafrullah, Agreeable domains, Comm. Algebra 23 (1995), no. 13, 4861-4883.   DOI
11 S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
12 D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994), no. 10, 3997-4011.   DOI
13 S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
14 E. Hamann, E. Houston, and J. L. Johnson, Properties of uppers to zero in R[X], Com. Alg. 23 (1995), 4861-4883.   DOI