Browse > Article
http://dx.doi.org/10.4134/JKMS.j170684

FIXED DIVISOR OF A MULTIVARIATE POLYNOMIAL AND GENERALIZED FACTORIALS IN SEVERAL VARIABLES  

Rajkumar, Krishnan (School of Computer & Systems Sciences Jawaharlal Nehru University)
Reddy, Arikatla Satyanarayana (Department of Mathematics Shiv Nadar University)
Semwal, Devendra Prasad (Department of Mathematics Shiv Nadar University)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.6, 2018 , pp. 1305-1320 More about this Journal
Abstract
We define new generalized factorials in several variables over an arbitrary subset ${\underline{S}}{\subseteq}R^n$, where R is a Dedekind domain and n is a positive integer. We then study the properties of the fixed divisor $d(\underline{S},f)$ of a multivariate polynomial $f{\in}R[x_1,x_2,{\ldots},x_n]$. We generalize the results of Polya, Bhargava, Gunji & McQuillan and strengthen that of Evrard, all of which relate the fixed divisor to generalized factorials of ${\underline{S}}$. We also express $d(\underline{S},f)$ in terms of the images $f({\underline{a}})$ of finitely many elements ${\underline{a}}{\in}R^n$, generalizing a result of Hensel, and in terms of the coefficients of f under explicit bases.
Keywords
fixed divisor; generalized factorial; Dedekind domain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Gunji and D. L. McQuillan, On a class of ideals in an algebraic number field, J. Number Theory 2 (1970), 207-222.   DOI
2 K. Hensel, Ueber den grossten gemeinsamen Theiler aller Zahlen, welche durch eine ganze Function von n Veranderlichen darstellbar sind, J. Reine Angew. Math. 116 (1896), 350-356.
3 W. Narkiewicz, Polynomial Mappings, Lecture Notes in Mathematics, 1600, Springer-Verlag, Berlin, 1995.
4 G. Polya, Uber ganzwertige ganze funktionen, Rend. Circ. Mat. Palermo 40 (1915), 1-16.
5 M. Wood, P-orderings: a metric viewpoint and the non-existence of simultaneous orderings, J. Number Theory 99 (2003), no. 1, 36-56.   DOI
6 D. Adam, Simultaneous orderings in function fields, J. Number Theory 112 (2005), no. 2, 287-297.   DOI
7 D. Adam, J.-L. Chabert, and Y. Fares, Subsets of $\mathbb{Z}$ with simultaneous orderings, Integers 10 (2010), A37, 437-451.
8 M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101-127.
9 M. Bhargava, Generalized factorials and fixed divisors over subsets of a Dedekind domain, J. Number Theory 72 (1998), no. 1, 67-75.   DOI
10 M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), no. 9, 783-799.   DOI
11 P.-J. Cahen, Polynomes a valeurs entieres, Canad. J. Math. 24 (1972), 747-754.
12 S. T. Chapman and B. A. McClain, Irreducible polynomials and full elasticity in rings of integer-valued polynomials, J. Algebra 293 (2005), no. 2, 595-610.   DOI
13 P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Mathematical Surveys and Monographs, 48, American Mathematical Society, Providence, RI, 1997.
14 J.-L. Chabert, Integer-valued polynomials: looking for regular bases (a survey), in Commutative algebra, 83-111, Springer, New York, 2014.
15 J.-L. Chabert and P.-J. Cahen, Old problems and new questions around integer-valued polynomials and factorial sequences, in Multiplicative ideal theory in commutative algebra, 89-108, Springer, New York, 2006.
16 L. E. Dickson, History of the Theory of Numbers. Vol. II, Chelsea Publishing Co., New York, 1966.
17 S. Evrard, Bhargava's factorials in several variables, J. Algebra 372 (2012), 134-148.   DOI
18 H. Gunji and D. L. McQuillan, On polynomials with integer coefficients, J. Number Theory 1 (1969), 486-493.   DOI