Browse > Article
http://dx.doi.org/10.4134/JKMS.j170490

PETTIS CONDITIONAL EXPECTATION OF CLOSED CONVEX RANDOM SETS IN A BANACH SPACE WITHOUT RNP  

Akhiat, Fattah (Laboratoire D'Analyse, Geometrie et ApplicationsDepartement de MathematiquesFaculte des Sciences kenitra)
El Harami, Mohamed (University Moulay Ismail, Higher School of Technology)
Ezzaki, Fatima (University Sidi Mohamed Ben Abdellah Faculty of Sciences and Technology Laboratory of Modeling and Computing Sciences)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.4, 2018 , pp. 833-848 More about this Journal
Abstract
In this paper we study the existence of conditional expectation for closed and convex valued Pettis-integrable random sets without assuming the Radon Nikodym property of the Banach space. New version of multivalued dominated convergence theorem of conditional expectation and multivalued $L{\acute{e}}vy^{\prime}s$ martingale convergence theorem for integrable and Pettis integrable random sets are proved.
Keywords
closed convex random sets; Aumann Pettis integral; Pettis integral; conditional expectation; $L{\acute{e}}vy$ theorem; dominated convergence theorem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Akhiat, C. Castaing, and F. Ezzaki, Some various convergence results for multivalued martingales, in Advances in mathematical economics. Volume 13, 1-33, Adv. Math. Econ., 13, Springer, Tokyo, 2010.
2 A. Amrani and C. Castaing, Weak compactness in Pettis integration, Bull. Pol. Acad. Sci. Math. 45 (1997), no. 2, 139-150.
3 A. Amrani, C. Castaing, and M. Valadier, Convergence in Pettis norm under extreme point condition, Vietnam J. Math. 26 (1998), no. 4, 323-335.
4 I. Assani and H.-A. Klei, Parties decomposables compactes de $L^1_E$, C. R. Acad. Sci. Paris Ser. I Math. 294 (1982), no. 16, 533-536.
5 G. Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15-36.   DOI
6 C. Castaing, F. Ezzaki, and C. Hess, Convergence of conditional expectations for unbounded closed convex random sets, Studia Math. 124 (1997), no. 2, 133-148.
7 C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. Vol. 580, 1977.
8 R. M. Dudley, Real Analysis and Probability, revised reprint of the 1989 original, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge, 2002.
9 K. El Amri and C. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), no. 4, 329-360.   DOI
10 G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Encyclopedia of Mathematics and its Applications, 47, Cambridge University Press, Cambridge, 1992.
11 M. El Harami and F. Ezzaki, General Pettis conditional expectation and convergence theorems, Int. J. Math. Stat. 11 (2012), no. 1, 91-111.
12 F. Ezzaki, A general dominated convergence theorem for unbounded random sets, Bull. Pol. Acad. Sci. Math. 44 (1996), no. 3, 353-361.
13 A. Faik, Contribution a l'analyse des multifonctions et a l'etude de quelques problemes d'evolution, These de doctorat, Montpellier II, 1995.
14 F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), no. 1, 149-182.   DOI
15 C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), no. 1, 39-58.   DOI
16 C. Hess, Quelques resultats sur la mesurabilite des multifonctions a valeurs dans un espace metrique separable, in Seminaire d'analyse convexe, Vol. 16, Exp. 1, 43 pp, Univ. Sci. Tech. Languedoc, Montpellier, 1986.
17 C. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), no. 1, 226-249.   DOI
18 K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 397-403.
19 U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (1969), 510-585.   DOI
20 J. Neveu, Martingales a temps discret, Masson et Cie, editeurs, Paris, 1972.
21 N. S. Papageorgiou, Convergence theorems for set-valued conditional expectations, Comment. Math. Univ. Carolin. 34 (1993), no. 1, 97-104.
22 V. I. Rybakov, Conditional mathematical expectations for functions that are integrable in the sense of Pettis, Mat. Zametki 10 (1971), 565-570.
23 M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224 pp.
24 K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1979), no. 2, 151-173.   DOI
25 Z. P. Wang and X. H. Xue, On convergence and closedness of multivalued martingales, Trans. Amer. Math. Soc. 341 (1994), no. 2, 807-827.   DOI
26 H. Ziat, Convergence des suites adaptees multivoques application a la loi forte des grands nombres multivoque, These de doctorat, Montpellier II, 1993.