1 |
M. Bertero, P. Boccacci, G. Desidera, and G. Vicidomini, Image deblurring with Poisson data: from cells to galaxies, Inverse Problems 25 (2009), no. 12, 123006, 26 pp.
|
2 |
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning 3 (2011), 1-122.
|
3 |
E. Bratsolis and M. Sigelle, A spatial regularization method preserving local photometry for Richardson-Lucy restoration, Astron. Astrophys. 375 (2001), 1120-1128.
DOI
|
4 |
E. J. Cande, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted minimization, J. Fourier Anal. Appl. 14 (2008), no. 5-6, 877-905.
DOI
|
5 |
R. Chartrandn, Nonconvex regularization for shape preservation, in Proc. IEEE Intl. Conf. Image Processing (ICIP) 1 (2007), 293-296.
|
6 |
T. Jeong, H. Woo, and S. Yun, Frame-based Poisson image restoration using a proximal linearized alternating direction method, Inverse Problems 29 (2013), no. 7, 075007, 20 pp.
|
7 |
D.-Q. Chen and L.-Z. Cheng, Fast linearized alternating direction minimization algorithm with adaptive parameter selection for multiplicative noise removal, J. Comput. Appl. Math. 257 (2014), 29-45.
DOI
|
8 |
I. Daubechies, R. Devore, M. Fornasier, and C. S. Guntuurk, Iteratively reweighted least squares minimization for sparse recovery, Comm. Pure Appl. Math. 63 (2010), no. 1, 1-38.
DOI
|
9 |
M. A. T. Figueiredo and J. M. Bioucas-Dias, Restoration of Poissonian images using alternating direction optimization, IEEE Trans. Image Process. 19 (2010), no. 12, 3133-3145.
DOI
|
10 |
D. Krishnan, and R. Fergus, Fast image deconvolution using hyper-Laplacian priors, in Proc. Adv. Neural Inf. Process. Syst. 22 (2009), 1-9.
|
11 |
F. Li, C. Shen, J. Fan, and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent. 18 (2007), 322-330.
DOI
|
12 |
T. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput. 22 (2000), no. 2, 503-516.
DOI
|
13 |
R. W. Liu and T. Xu, A robust alternating direction method for constrained hybrid variational deblurring model, Preprint, 2013.
|
14 |
M. Lysaker, A. Lundervold, and X.-C. Tai, Noise removal using fourth-order partial differential equation with applaication to medical magnetic resonance images in space and time, IEEE Trans. Image Process. 12 (2003), 1579-1590.
DOI
|
15 |
S. Oh, H. Woo, S. Yun, and M. Kang, Non-convex hybrid total variation for image denoising, J. Vis. Comm. Image R. 24 (2013), 332-344.
DOI
|
16 |
M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vis. 66 (2006), 5-18.
DOI
|
17 |
Y. Nesterov, Introductory Lectures on Convex Optimization, Applied Optimization, 87, Kluwer Academic Publishers, Boston, MA, 2004.
|
18 |
P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM J. Imaging Sci. 8 (2015), no. 1, 331-372.
DOI
|
19 |
R. T. Rockafellar and R. J.-B. Wets, Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317, Springer-Verlag, Berlin, 1998.
|
20 |
P. Sarder and A. Nehorai, Deconvolution methods for 3-d fluorescence microscopy images, IEEE Signal Process. Mag. 23 (2006), 32-45.
DOI
|
21 |
S. Setzer, G. Steidl, and T. Teuber, Deblurring Poissonian images by split Bregman techniques, J. Vis. Commun. Image R. 21 (2010), 193-199.
DOI
|
22 |
L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Image 1 (1982), 113-122.
DOI
|
23 |
Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci. 1 (2008), no. 3, 248-272.
DOI
|
24 |
C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci. 3 (2010), no. 3, 300-339.
DOI
|