Browse > Article
http://dx.doi.org/10.4134/JKMS.j170385

CRITICAL VIRTUAL MANIFOLDS AND PERVERSE SHEAVES  

Kiem, Young-Hoon (Department of Mathematics and Research Institute of Mathematics Seoul National University)
Li, Jun (Department of Mathematics Stanford University)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.3, 2018 , pp. 623-669 More about this Journal
Abstract
In Donaldson-Thomas theory, moduli spaces are locally the critical locus of a holomorphic function defined on a complex manifold. In this paper, we develop a theory of critical virtual manifolds which are the gluing of critical loci of holomorphic functions. We show that a critical virtual manifold X admits a natural semi-perfect obstruction theory and a virtual fundamental class $[X]^{vir}$ whose degree $DT(X)=deg[X]^{vir}$ is the Euler characteristic ${\chi}_{\nu}$(X) weighted by the Behrend function ${\nu}$. We prove that when the critical virtual manifold is orientable, the local perverse sheaves of vanishing cycles glue to a perverse sheaf P whose hypercohomology has Euler characteristic equal to the Donaldson-Thomas type invariant DT(X). In the companion paper, we proved that a moduli space X of simple sheaves on a Calabi-Yau 3-fold Y is a critical virtual manifold whose perverse sheaf categorifies the Donaldson-Thomas invariant of Y and also gives us a mathematical theory of Gopakumar-Vafa invariants.
Keywords
Donaldson-Thomas invariant; critical virtual manifold; perverse sheaves; mixed Hodge module;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307-1338.   DOI
2 K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88.   DOI
3 A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), 5-171, Asterisque, 100, Soc. Math. France, Paris, 1982.
4 O. Ben-Bassat, C. Brav, V. Bussi, and D. Joyce, A 'Darboux theorem' for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015), no. 3, 1287-1359.   DOI
5 C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendroi, Symmetries and stabilization for sheaves of vanishing cycles. With an appendix by Jorg Schurmann, J. Singul. 11 (2015), 85-151.
6 H. Chang and J. Li, Semi-perfect obstruction theory and Donaldson-Thomas invariants of derived objects, Comm. Anal. Geom. 19 (2011), no. 4, 807-830.   DOI
7 P. Deligne, Theoreme de Lefschetz et criteres de degenerescence de suites spectrales, Inst. Hautes Etudes Sci. Publ. Math. No. 35 (1968), 259-278.
8 A. Dimca, Sheaves in Topology, Universitext, Springer-Verlag, Berlin, 2004.
9 P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.
10 M. Goresky and R. MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77-129.   DOI
11 R. Hotta, K. Takeuchi, and T. Tanisaki, D-modules, perverse sheaves, and representation theory, translated from the 1995 Japanese edition by Takeuchi, Progress in Mathematics, 236, Birkhauser Boston, Inc., Boston, MA, 2008.
12 L. Illusie, Complexe cotangent et deformations. I, II, Lecture Notes in Mathematics, Vol. 239 and Vol. 283, Springer-Verlag, Berlin, 1971 and 1972.
13 D. Joyce, A classical model for derived critical loci, J. Differential Geom. 101 (2015), no. 2, 289-367.   DOI
14 D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199 pp.
15 M. Kashiwara and P. Schapira, Sheaves on Manifolds, corrected reprint of the 1990 original, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, Berlin, 1994.
16 Y.-H. Kiem and J. Li, Categorification of Donaldson-Thomas invariants via perverse sheaves, Preprint, arXiv:1212.6444.
17 D. B. Massey, The Sebastiani-Thom isomorphism in the derived category, Compositio Math. 125 (2001), no. 3, 353-362.   DOI
18 F. Kirwan and J. Woolf, An introduction to Intersection Homology Theory, second edition, Chapman & Hall/CRC, Boca Raton, FL, 2006.
19 R. Gopakumar and C. Vafa, M-Theory and Topological Strings II, arXiv:9812127.
20 R. MacPherson and K. Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84 (1986), no. 2, 403-435.   DOI
21 M. Saito, D-modules on analytic spaces, Publ. Res. Inst. Math. Sci. 27 (1991), no. 2, 291-332.   DOI
22 A. Parusinski and P. Pragacz, Characteristic classes of hypersurfaces and characteristic cycles, J. Algebraic Geom. 10 (2001), no. 1, 63-79.
23 M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849-995.   DOI
24 M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221-333.   DOI
25 C. Schnell, An overview of Morihiko Saito's theory of mixed Hodge modules, Preprint, arXiv:1405.3096.
26 R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000), no. 2, 367-438.   DOI