1 |
M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse least squares problems, Numer. Math. 55 (1989), no. 6, 667-684.
DOI
|
2 |
Z.-Z. Bai, G. H. Golub, and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math. 98 (2004), no. 1, 1-32.
DOI
|
3 |
Z.-Z. Bai, B. N. Parlett, and Z.-Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102 (2005), no. 1, 1-38.
DOI
|
4 |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
|
5 |
Z. Chao and G. Chen, Semi-convergence analysis of the Uzawa-SOR methods for singular saddle point problems, Appl. Math. Lett. 35 (2014), 52-57.
DOI
|
6 |
Z. Chao, N.-M. Zhang, and Y.-Z. Lu, Optimal parameters of the generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 266 (2014), 52-60.
DOI
|
7 |
H. C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J. Sci. Comput. 20 (1999), no. 4, 1299-1316.
DOI
|
8 |
H. C. Elman and D. J. Silvester, Fast nonsymmetric iteration and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput. 17 (1996), no. 1, 33-46.
DOI
|
9 |
B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for augmented systems, BIT 38 (1998), 527-543.
DOI
|
10 |
G. H. Golub, X. Wu, and J.-Y. Yuan, SOR-like methods for augmented systems, BIT 41 (2001), no. 3, 71-85.
DOI
|
11 |
F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incom-pressible flow of fluid with free surface, Phys. Fluids 8 (1965), 2182-2189.
DOI
|
12 |
J.-I. Li and T.-Z. Huang, The semi-convergence of generalized SSOR method for singular augmented systems, High Performance Computing and Applications, Lecture Notes in Computer Science 5938 (2010), 230-235.
|
13 |
G. H. Santos, B. P. B. Silva, and J.-Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math. 100 (1998), no. 1, 1-9.
DOI
|
14 |
S. Wright, Stability of augmented system factorization in interior point methods, SIAM J. Matrix Anal. Appl. 18 (1997), no. 1, 191-222.
DOI
|
15 |
S.-L. Wu, T.-Z. Huang, and X.-L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math. 228 (2009), no. 1, 424-433.
DOI
|
16 |
D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
|
17 |
J.-Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient methods for generalized least squares problem, J. Comput. Appl. Math. 71 (1996), no. 2, 287-297.
DOI
|
18 |
J. H. Yun, Variants of the Uzawa method for saddle point problem, Comput. Math. Appl. 65 (2013), no. 7, 1037-1046.
DOI
|
19 |
J. H. Yun, Convergence of relaxation iterative methods for saddle point problem, Appl. Math. Comput. 251 (2015), 65-80.
DOI
|
20 |
G.-F. Zhang and Q.-H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 219 (2008), no. 1, 51-58.
DOI
|
21 |
G.-F. Zhang and S.-S. Wang, A generalization of parameterized inexact Uzawa method for singular saddle point problems, Appl. Math. Comput. 219 (2013), no. 9, 4225-4231.
DOI
|
22 |
N. Zhang, T.-T. Lu, and Y. Wei, Semi-convergence analysis of Uzawa methods for singular saddle point problems, J. Comput. Appl. Math. 255 (2014), 334-345.
DOI
|
23 |
N. Zhang and Y. Wei, On the convergence of general stationary iterative methods for range-Hermitian singular linear systems, Numer. Linear Algebra Appl. 17 (2010), no. 1, 139-154.
DOI
|
24 |
B. Zheng, Z.-Z. Bai, and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl. 431 (2009), no. 5-7, 808-817.
DOI
|