1 |
L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.
|
2 |
L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3, 527-555.
DOI
|
3 |
D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, vol.33, American Mathematical Society, Providence, RI, 2001.
|
4 |
Y. Burago, M. Gromov, and G. Perelman, A. D. Aleksandrov spaces with curvature bounded below, Russian Math. Surveys 47 (1992), no. 2, 1-58.
DOI
|
5 |
K. Kuwae, Y. Machigahira, and T. Shioya, Sobolev sapces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269-316.
DOI
|
6 |
K. Kuwae and T. Shioya, Laplacian comparison for Alexandrov spaces, arXiv:0709.0788, 2007.
|
7 |
K. Kuwae and T. Shioya, Infinitesimal Bishop-Gromov condition for Alexandrov spaces, Probabilistic approach to geometry, 293-302, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010.
|
8 |
K. Kuwae and T. Shioya, A topological splitting theorem for weighted Alexandrov spaces, Tohoku Math. J. (2) 63 (2011), no. 1, 59-76.
DOI
|
9 |
S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007), no. 4, 805-828.
|
10 |
H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.
DOI
|
11 |
Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), no. 3, 629-658.
DOI
|
12 |
G. Perelman, DC-structure on Alexandrov spaces, preprint.
|
13 |
A. Petrunin, Alexandrov meets Lott-Villani-Sturm, Munster J. Math. 4 (2011), 53-64.
|
14 |
S. Pigola, M. Rigoli, and A. G. Setti, A remark on the maximum principle and stochastic completeness, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1283-1288.
DOI
|
15 |
J. Rataj and L. Zajicek, Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces, Houston J. Math. 38 (2012), no. 2, 445-467.
|
16 |
A. Ratto, M. Rigoli, and A. G. Setti, On the Omori-Yau maximum principle and its application to differential equations and geometry, J. Funct. Anal. 134 (1995), no. 2, 486-510.
DOI
|
17 |
M.-K. von Renesse, Heat kernel comparison on Alexandrov spaces with curvature bounded below, Potential Anal. 21 (2004), no. 2, 151-176.
DOI
|
18 |
S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
DOI
|
19 |
S. T. Yau, A general Schwarz lemma for Kahler manifolds, Amer. J. Math. 100 (1978), no. 1, 197-203.
DOI
|
20 |
H. Zhang and X. Zhu, Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom. 18 (2010), no. 3, 503-553.
DOI
|