Browse > Article
http://dx.doi.org/10.4134/JKMS.j150134

OMORI-YAU MAXIMUM PRINCIPLE ON ALEXANDROV SPACES  

Lee, Hanjin (Global Leadership School Handong Global University, School of Mathematics Korea Institute for Advanced Study)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.3, 2016 , pp. 533-547 More about this Journal
Abstract
We prove an Omori-Yau maximum principle on Alexandrov spaces which do not have Perelman singular points and satisfy the infinitesimal Bishop-Gromov condition.
Keywords
Omori-Yau maximum principle; Alexandrov space; Bishop-Gromov condition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.
2 L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3, 527-555.   DOI
3 D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, vol.33, American Mathematical Society, Providence, RI, 2001.
4 Y. Burago, M. Gromov, and G. Perelman, A. D. Aleksandrov spaces with curvature bounded below, Russian Math. Surveys 47 (1992), no. 2, 1-58.   DOI
5 K. Kuwae, Y. Machigahira, and T. Shioya, Sobolev sapces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269-316.   DOI
6 K. Kuwae and T. Shioya, Laplacian comparison for Alexandrov spaces, arXiv:0709.0788, 2007.
7 K. Kuwae and T. Shioya, Infinitesimal Bishop-Gromov condition for Alexandrov spaces, Probabilistic approach to geometry, 293-302, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010.
8 K. Kuwae and T. Shioya, A topological splitting theorem for weighted Alexandrov spaces, Tohoku Math. J. (2) 63 (2011), no. 1, 59-76.   DOI
9 S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007), no. 4, 805-828.
10 H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.   DOI
11 Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), no. 3, 629-658.   DOI
12 G. Perelman, DC-structure on Alexandrov spaces, preprint.
13 A. Petrunin, Alexandrov meets Lott-Villani-Sturm, Munster J. Math. 4 (2011), 53-64.
14 S. Pigola, M. Rigoli, and A. G. Setti, A remark on the maximum principle and stochastic completeness, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1283-1288.   DOI
15 J. Rataj and L. Zajicek, Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces, Houston J. Math. 38 (2012), no. 2, 445-467.
16 A. Ratto, M. Rigoli, and A. G. Setti, On the Omori-Yau maximum principle and its application to differential equations and geometry, J. Funct. Anal. 134 (1995), no. 2, 486-510.   DOI
17 M.-K. von Renesse, Heat kernel comparison on Alexandrov spaces with curvature bounded below, Potential Anal. 21 (2004), no. 2, 151-176.   DOI
18 S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.   DOI
19 S. T. Yau, A general Schwarz lemma for Kahler manifolds, Amer. J. Math. 100 (1978), no. 1, 197-203.   DOI
20 H. Zhang and X. Zhu, Ricci curvature on Alexandrov spaces and rigidity theorems, Comm. Anal. Geom. 18 (2010), no. 3, 503-553.   DOI