Browse > Article
http://dx.doi.org/10.4134/JKMS.2016.53.1.019

SECOND-ORDER SYMMETRIC DUALITY IN MULTIOBJECTIVE PROGRAMMING OVER CONES  

GULATI, TILAK RAJ (DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY ROORKEE)
MEHNDIRATTA, GEETA (DEPARTMENT OF APPLIED SCIENCES AND HUMANITIES INDIRA GANDHI DELHI TECHNICAL UNIVERSITY FOR WOMEN)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.1, 2016 , pp. 19-25 More about this Journal
Abstract
In this paper, some omissions in Mishra and Lai [13], have been pointed out and their corrective measures have been discussed briefly.
Keywords
nonlinear programming; multiobjective programming; efficient solutions; second-order symmetric duality; K-${\eta}$-bonvexity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Ahmad, Second order symmetric duality in nondifferentiable multiobjective programming, Inform. Sci. 173 (2005), no. 1-3, 23-34.   DOI
2 I. Ahmad and Z. Husain, Nondifferentiable second order symmetric duality in multiobjective programming, Appl. Math. Lett. 18 (2005), no. 7, 721-728.   DOI
3 M. S. Bazaraa and J. J. Goode, On symmetric duality in nonlinear programming, Operations Res. 21 (1973), 1-9.   DOI
4 G. B. Dantzig, E. Eisenberg, and R. W. Cottle, Symmetric dual nonlinear programs, Pacific J. Math. 15 (1965), 809-812.   DOI
5 G. Devi, Symmetric duality for nonlinear programming problem involving-bonvex functions, European J. Operational Research 104 (1998), 615-621.   DOI
6 W. S. Dorn, A symmetric dual theorem for quadratic programs, J. Operations Research Society of Japan 2 (1960), 93-97.
7 T. R. Gulati, S. K. Gupta, and I. Ahmad, Second-order symmetric duality with cone constraints, J. Comput. Appl. Math. 220 (2008), no. 1-2, 347-354.   DOI
8 T. R. Gulati and G. Mehndiratta, Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones, Optim. Lett. 4 (2010), no. 2, 293-309.   DOI
9 S. H. Hou and X. M. Yang, On second-order symmetric duality in nondifferentiable programming, J. Math. Anal. Appl. 255 (2001), no. 2, 491-498.   DOI
10 S. Khurana, Symmetric duality in multiobjective programming involving generalized cone-index functions, European J. Oper. Res. 165 (2005), no. 3, 592-597.   DOI
11 O. L. Mangasarian, Second and higher-order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975), no. 3, 607-620.   DOI
12 S. K. Mishra, Multiobjective second order symmetric duality with cone constraints, European J. Oper. Res. 126 (2000), no. 3, 675-682.   DOI
13 S. K. Mishra and K. K. Lai, Second order symmetric duality in multiobjective program- ming involving generalized cone-invex functions, European J. Oper. Res. 178 (2007), no. 1, 20-26.   DOI
14 S. K. Suneja, S. Aggarwal, and S. Davar, Multiobjective symmetric duality involving cones, European J. Oper. Res. 141 (2002), no. 3, 471-479.   DOI
15 S. K. Suneja, C. S. Lalitha, and S. Khurana, Second order symmetric duality in multi- objective programming, European J. Oper. Res. 144 (2003), no. 3, 492-500.   DOI
16 X. M. Yang, X. Q. Yang, K. L. Teo, and S. H. Hou, Multiobjective second-order sym- metric duality with F-convexity, European J. Oper. Res. 165 (2005), no. 3, 585-591.   DOI