1 |
D. Davenport, L. Shapiro, and L. Woodson, The oldest child tree, Congr. Numer. 213 (2012), 123-131.
|
2 |
N. Dershowitz and S. Zaks, Enumerations of ordered trees, Discrete Math. 31 (1980), no. 1, 9-28.
DOI
|
3 |
E. Deutsch, Ordered trees with prescribed root degrees, node degrees, and branch lengths, Discrete Math. 282 (2004), no. 1-3, 89-94.
DOI
|
4 |
R. Donaghey and L.W. Shapiro, Motzkin numbers, J. Combin. Theory Ser. A 23 (1977), no. 3, 291-301.
DOI
|
5 |
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.
|
6 |
R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.
|
7 |
S. Heubach, N. Y. Li, and T. Mansour, A garden of k-Catalan structures, 2008. Available at: http://web.calstatela.edu/faculty/sheubac/papers/k-Catalan%20structures.pdf
|
8 |
J. H. Lambert, Observations variae in Mathesin puram, Acta Helvetica 3 (1758), 128- 168.
|
9 |
D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, On some alternative charac- terizations of Riordan arrays, Canad. J. Math. 49 (1997), no. 2, 301-320.
DOI
|
10 |
J. H. Relethford, Human Population Genetics, 1st ed., Wiley-Blackwell, 2012.
|
11 |
L. Shapiro, S. Getu, W.-J. Woan, and L. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), no. 1-3, 229-239.
DOI
|
12 |
N. J. A. Sloane, The On-Line Encyclopedia of lnteger Sequences, http://www.research.att.com/-njas/sequences.
|
13 |
R. Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math. 132 (1994), no. 1-3, 267-290.
DOI
|
14 |
R. P. Stanley, Enumerative Combinatorics, Cambridge University Press, Cambridge, 1999.
|
15 |
R. P. Stanley, Catalan Numbers, 1st Ed., Cambridge University Press, New York, 2015.
|