1 |
S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
DOI
|
2 |
A. Ebadian and S. Najafzadeh, Uniformly starlike and convex univalent functions by using certain integral operator, Acta Univ. Apulensis Math. Inform. 20 (2009), 17-23.
|
3 |
A. Ebadian, S. Shams, Z. G.Wang, and Y. Sun, A class of multivalent analytic functions involving the generalized Jung-Kim-Srivastava operator, Acta Univ. Apulensis Math. Inform. 18 (2009), 265-277.
|
4 |
D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1995), 191-195.
|
5 |
S. M. Khairnar and M. More, On a subclass of multivalent uniformly starlike and convex functions defined by a linear operator, IAENG Int. J. Appl. Math. 39 (2009), no. 3, 175-183.
|
6 |
Y. Komatu, On analytic prolongation of a family of operators, Mathematica (Cluj) 32(55) (1990), no. 2, 141-145.
|
7 |
S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), no. 2, 157-171.
DOI
|
8 |
S. S. Miller, Differential Subordinations: Theory and Applications, in: Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000.
|
9 |
R. K. Raina and I. B. Bapna, On the starlikeness and convexity of a certain integral operator, Southeast Asian Bull. Math. 33 (2009), no. 1, 101-108.
|
10 |
T. O. Salim, A class of multivalent functions involving a generalized linear operator and subordination, Int. J. Open Problems Complex Analysis 2 (2010), no. 2, 82-94.
|
11 |
S. Shams, S. R. Kulkarni, and J. M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Int. J. Math. Math. Sci. 2006 (2006), Article ID 94572, 1-3.
|
12 |
H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992.
|
13 |
J. Stankiewicz and Z. Stankiewicz, Some applications of the Hadamard convolution in the theory of functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 40 (1986), 251- 265.
|
14 |
S. R. Swamy, Some subordination properties of multivalent functions defined by certain linear operators, J. Math. Comput. Sci. 3 (2013), no. 2, 554-568.
|
15 |
E. T. Whittaker and G. N. Watson, A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account to the Principle Transcendental Functions, 4th Edition, Cambridge University Press, Cambridge, 1927.
|