1 |
A. Lorz, Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci. 20 (2010), no. 6, 987-1004.
DOI
|
2 |
T. Nagai, T. Senba, and K. Yoshida, Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial Ekvac. 40 (1997), no. 3, 411-433.
|
3 |
Y. Naito, Asymptotically self-similar solutions for the parabolic system modelling chemotaxis, Banach center publications, 74, 149-160, 2006.
|
4 |
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac. 44 (2001), no. 3, 441-469.
|
5 |
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311-338.
DOI
|
6 |
R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model, arXiv:1403.4975v1.
|
7 |
Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Cont. Dyn. Syst. A 32 (2012), no. 5, 1901-1914.
DOI
|
8 |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS 102 (2005), no. 7, 2277-2282.
DOI
|
9 |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations 248 (2012), no. 12, 2889-2995.
DOI
|
10 |
M. Winkler, Global large data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations 37 (2012), no. 2, 319-351.
DOI
|
11 |
M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal. 211 (2014), no. 2, 455-487.
DOI
|
12 |
E. A. Carlen and M. Loss, Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 22-D Navier-Stokes equation, Duke Math. J. 81 (1995), no. 1, 135-157.
DOI
|
13 |
A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations 19 (1994), no. 5-6, 827-872.
DOI
|
14 |
M. Chae, K. Kang, and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Cont. Dyn. Syst. A 33 (2013), no. 6, 2271-2297.
DOI
|
15 |
M. Chae, Global existence and temporal decay in Keller-Segel models coupled to fiuid equations, Comm. Partial Diff. Equations 39 (2014), no. 7, 1205-1235.
DOI
|
16 |
A. Chertock, K. Fellner, A. Kurganov, A. Lorz, and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech. 694 (2012), 155-190.
DOI
|
17 |
Y.-S. Chung, K. Kang, and J. Kim, Global existence of weak solutions for a Keller-Segel- fluid model with nonlinear diffusion, J. Korean Math. Soc. 51 (2014), no. 3, 635-654.
DOI
|
18 |
R. Duan, A. Lorz, and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations 35 (2010), no. 9, 1635-1673.
DOI
|
19 |
T. Gallay and C. E. Wayne, Global stability of vortex solutions of the two dimensional Navier-Stokes equation, Comm. Math. Phys. 255 (2005), no. 1, 97-129.
DOI
|
20 |
M. D. Francesco, A. Lorz, and P. Markowich, Chemotaxis-fluid coupled model for swim- ming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Cont. Dyn. Syst. A 28 (2010), no. 4, 1437-1453.
DOI
|
21 |
M. Giga, Y. Giga, and J. Saal, Nonlinear Partial Differential Equations, Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhauser Boston, 2010.
|
22 |
M. Giga and T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation, Comm. Math. Phys. 117 (1988), no. 4, 549-568.
DOI
|
23 |
M. A. Herrero and J. L. L. Velazquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Ser. 24 (1997), no. 4, 633-683.
|
24 |
D. Horstman, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103-165.
|
25 |
D. Horstman, From 1970 until present: The Keller-Segel model in chemotaxis and its conse- quences II, Jahresber. Deutsch. Math.-Verein. 106 (2004), no. 2, 51-69.
|
26 |
W. Jager and S. Luckhaus, On explosions of solutions to s system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), no. 2, 819-824.
DOI
|
27 |
E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewd as an instability, J. Theor. Biol. 26 (1970), no. 3, 399-415.
DOI
|
28 |
E. F. Keller, Model for chemotaxis, J. Theor. Biol. 30 (1971), no. 2, 225-234.
DOI
|