Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.4.751

STRUCTURE OF IDEMPOTENTS IN RINGS WITHOUT IDENTITY  

Kim, Nam Kyun (Faculty of Liberal Arts and Sciences Hanbat National University)
Lee, Yang (Department of Mathematics Education Pusan National University)
Seo, Yeonsook (Department of Mathematics Pusan National University)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.4, 2014 , pp. 751-771 More about this Journal
Abstract
We study the structure of idempotents in polynomial rings, power series rings, concentrating in the case of rings without identity. In the procedure we introduce right Insertion-of-Idempotents-Property (simply, right IIP) and right Idempotent-Reversible (simply, right IR) as generalizations of Abelian rings. It is proved that these two ring properties pass to power series rings and polynomial rings. It is also shown that ${\pi}$-regular rings are strongly ${\pi}$-regular when they are right IIP or right IR. Next the noncommutative right IR rings, right IIP rings, and Abelian rings of minimal order are completely determined up to isomorphism. These results lead to methods to construct such kinds of noncommutative rings appropriate for the situations occurred naturally in studying standard ring theoretic properties.
Keywords
idempotent; right IIP ring; right IR ring; Abelian ring;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Xu and W. Xue, Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ. 40 (1998), 69-76.
2 P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648.   DOI
3 F. Dischinger, Sur les anneaux fortement ${\pi}$-reguliers, C. R. Acad. Sci. Paris Ser. A-B 283 (1976), no. 8, 571-573.
4 K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 75 (1968), no. 5, 512-514.   DOI   ScienceOn
5 D. B. Erickson, Orders for finite noncommutative rings, Amer. Math. Monthly 73 (1966), 376-377.   DOI   ScienceOn
6 C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167.   DOI   ScienceOn
7 C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52.   DOI   ScienceOn
8 N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.   DOI   ScienceOn
9 N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223.   DOI   ScienceOn
10 R. L. Kruse and D. T. Price, Nilpotent Rings, Gordon and Breach, New York, London, Paris, 1969.
11 J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
12 J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368.   DOI
13 G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318.   DOI   ScienceOn
14 L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels anneaux dont les ideaux principaux sont idempotents, In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris 1982.
15 G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60.   DOI
16 W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded nonduo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788.   DOI   ScienceOn
17 H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.   DOI
18 D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852.   DOI   ScienceOn
19 G. Azumaya, Strongly ${\pi}$-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I. 13 (1954), 34-39.
20 H. E. Bell, A commutativity study for periodic rings, Pacific J. Math. 70 (1977), no. 1, 29-36.   DOI
21 F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
22 E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91.   DOI   ScienceOn