Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.3.609

SOME RESULTS ON CONDITIONALLY UNIFORMLY STRONG MIXING SEQUENCES OF RANDOM VARIABLES  

Yuan, De-Mei (School of Mathematics and Statistics Chongqing Technology and Business University)
Hu, Xue-Mei (School of Mathematics and Statistics Chongqing Technology and Business University)
Tao, Bao (School of Mathematics and Statistics Chongqing Technology and Business University)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.3, 2014 , pp. 609-633 More about this Journal
Abstract
From the ordinary notion of uniformly strong mixing for a sequence of random variables, a new concept called conditionally uniformly strong mixing is proposed and the relation between uniformly strong mixing and conditionally uniformly strong mixing is answered by examples, that is, uniformly strong mixing neither implies nor is implied by conditionally uniformly strong mixing. A couple of equivalent definitions and some of basic properties of conditionally uniformly strong mixing random variables are derived, and several conditional covariance inequalities are obtained. By means of these properties and conditional covariance inequalities, a conditional central limit theorem stated in terms of conditional characteristic functions is established, which is a conditional version of the earlier result under the non-conditional case.
Keywords
conditionally uniformly strong mixing; conditional covariance inequality; conditional independence; conditional stationarity; conditional central limit theorem; conditional characteristic function;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. G. Roussas and A. Ioannides, Moment inequalities for mixing sequences of random variables, Stoch. Anal. Appl. 5 (1987), no. 1, 61-120.
2 P. K. Sen, A note on weak convergence of empirical processes for sequences of $\varphi$-mixing random variables, Ann. Math. Statist. 42 (1971), no. 6, 2131-2133.   DOI   ScienceOn
3 Q. M. Shao, Almost sure invariance principles for mixing sequences of random variables, Stochastic Proc. Appl. 48 (1993), no. 2, 319-334.   DOI   ScienceOn
4 Z. S. Szewczak, A note on Marcinkiewicz laws for strictly stationary $\varphi$-mixing sequences, Statist. Probab. Lett. 81 (2011), no. 11, 1738-1741.   DOI   ScienceOn
5 S. A. Utev, The central limit theorem for $\varphi$-mixing arrays of random variables, Theory Probab. Appl. 35 (1990), no. 1, 131-139.
6 D. M. Yuan and L. Lei, Some conditional results for conditionally strong mixing se-quences of random variables, Sci. China Math. 56 (2013), no. 4, 845-859.   DOI
7 D. M. Yuan, L. R. Wei, and L. Lei, Conditional central limit theorems for a sequence of conditionally independent random variables, J. Korean Math. Soc. 51 (2014), no. 1, 1-15.
8 D. M. Yuan and Y. Xie, Conditional limit theorems for conditionally linearly negative quadrant dependent random variables, Monatsh. Math. 166 (2012), no. 2, 281-299.   DOI
9 D. M. Yuan and Y. K. Yang, Conditional versions of limit theorems for conditionally associated random variables, J. Math. Anal. Appl. 376 (2011), no. 1, 282-293.   DOI   ScienceOn
10 D. M. Yuan and J. H. Zheng, Conditionally negative association resulting from multi-nomial distribution, Statist. Probab. Lett. 83 (2013), no. 10, 2222-2227.   DOI   ScienceOn
11 S. Hu and X. Wang, Large deviations for some dependent sequences, Acta Math. Sci. Ser. B Engl. Ed. 28 (2008), no. 2, 295-300.
12 P. Y. Chen and D. C. Wang, Complete moment convergence for sequence of identically distributed $\varphi$-mixing random variables, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 4, 679-690.   DOI
13 Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 3rd Edition, New York, Springer-Verlag, 1997.
14 R. L. Dobrushin, Central limit theorem for nonstationary Markov chains. I, Theory Probab. Appl. 1 (1956), no. 1, 65-80.   DOI
15 R. L. Dobrushin, Central limit theorem for nonstationary Markov chains. II, Theory Probab. Appl. 1 (1956), no. 4, 329-383.   DOI
16 J. L. Doob, Stochastic Processes, New York, John Wiley and Sons, 1953.
17 I. A. Ibragimov, Some limit theorems for stochastic processes stationary in the strict sense, Dokl. Akad. Nayk SSSR. 125 (1959), 711-714 (in Russian).
18 I. A. Ibragimov, Some limit theorems for stationary processes, Theory Probab. Appl. 7 (1962), no. 4, 349-382.   DOI
19 M. Ordonez Cabrera, A. Rosalsky, and A. Volodin, Some theorems on conditional mean convergence and conditional almost sure convergence for randomly weighted sums of dependent random variables, TEST 21 (2012), no. 2, 369-385.   DOI
20 A. Kuczmaszewska, On the strong law of large numbers for $\varphi$-mixing and $\rho$-mixing random variables, Acta Math. Hungar. 132 (2011), no. 1-2, 174-189.   DOI
21 Z. Y. Lin and Z. D. Bai, Probability Inequalities, Beijing, Science Press, 2010.
22 M. Peligrad, An invariance principle for $\varphi$-mixing sequences, Ann. Probab. 13 (1985), no. 4, 1304-1313.   DOI   ScienceOn
23 B. L. S. Prakasa Rao, Conditional independence, conditional mixing and conditional association, Ann. Inst. Statist. Math. 61 (2009), no. 2, 441-460.   DOI
24 K. Knopp, Theory and Application of Infinite Series, London, Blackie & Son, 1951.
25 D. M. Yuan, J. An, and X. S.Wu, Conditional limit theorems for conditionally negatively associated random variables, Monatsh. Math. 161 (2010), no. 4, 449-473.   DOI