Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.1.017

ROBUSTLY SHADOWABLE CHAIN COMPONENTS OF C1 VECTOR FIELDS  

Lee, Keonhee (Department of Mathematics Chungnam National University)
Le, Huy Tien (Department of Mathematics Vietnam National University)
Wen, Xiao (The School of Mathematics and System Science Beihang University)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.1, 2014 , pp. 17-53 More about this Journal
Abstract
Let ${\gamma}$ be a hyperbolic closed orbit of a $C^1$ vector field X on a compact boundaryless Riemannian manifold M, and let $C_X({\gamma})$ be the chain component of X which contains ${\gamma}$. We say that $C_X({\gamma})$ is $C^1$ robustly shadowable if there is a $C^1$ neighborhood $\mathcal{U}$ of X such that for any $Y{\in}\mathcal{U}$, $C_Y({\gamma}_Y)$ is shadowable for $Y_t$, where ${\gamma}_Y$ denotes the continuation of ${\gamma}$ with respect to Y. In this paper, we prove that any $C^1$ robustly shadowable chain component $C_X({\gamma})$ does not contain a hyperbolic singularity, and it is hyperbolic if $C_X({\gamma})$ has no non-hyperbolic singularity.
Keywords
chain component; dominated splitting; homoclinic class; hyperbolicity; robust shadowability; uniform hyperbolicity; vector field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Arroyo and F. R. Hertz, Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincare Anal. Non Lineaire 20 (2003), no. 5, 805-841.   DOI   ScienceOn
2 C. Bonatti, N. Gourmelon, and T. Vivier, Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1307-1337.   DOI   ScienceOn
3 C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985), 59-89, Pitman Res. Notes Math. Ser., 160, Longman Sci. Tech., Harlow, 1987.
4 S. Gan, K. Sakai, and L. Wen, $C^1$-stably weakly shadowing homoclinic classes admit dominated splitting, Discrete Contin. Dyn. Syst. 27 (2010), no. 1, 205-216.   DOI
5 S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math. 164 (2006), no. 2, 279-315.   DOI
6 N. Gourmelon, A Franks' lemma that preserves invariant manifolds, preprint at http://www.preprint.impa.br/.
7 S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$-stability and ${\Omega}$-stability conjectures for flows, Ann. of Math. (2) 145 (1997), no. 1, 81-137.   DOI
8 M. Komuro, One-parameter flows with the pseudo orbit tracing property, Monatsh. Math. 98 (1984), no. 3, 219-253.   DOI
9 M. Li, S. Gan, and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincare flow, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 239-269.   DOI
10 S. Liao, An existence theorem for periodic orbits, Acta. Sci. Nat. Univ. Pekin. 1 (1979), 1-20.
11 K. Lee and M. Lee, Hyperbolicity of $C^1$-stably expansive homoclinic classes, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 1133-1145.   DOI
12 K. Lee, K. Moriyasu, and K. Sakai, $C^1$-stable shadowing diffeomorphisms, Discrete Contin. Dyn. Syst. 23 (2008), no. 3, 683-697.
13 K. Lee and K. Sakai, Structural stability of vector fields with shadowing, J. Differential Equations 232 (2007), no. 1, 303-313.   DOI   ScienceOn
14 R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540.   DOI   ScienceOn
15 J. Palis and W. de Melo, Geometric Theory of Dynamical Systems: An Introduction, Springer-Verlag, 1982.
16 C. Pugh and C. Robinson, The $C^r$ closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems 3 (1983), no. 2, 261-313.
17 S. Yu. Pilyugin and S. B. Tikhomirov, Vector fields with the oriented shadowing property, J. Differential Equations 248 (2010), no. 6, 1345-1375.   DOI   ScienceOn
18 C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Second edition, Studies in Advanced Mathematics, CRC Press, 1999.
19 K. Sakai, Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math. 31 (1994), no. 2, 373-386.
20 K. Sakai, $C^1$-stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029.
21 M. Sambarino and J. L. Vieitez, On $C^1$-persistently expansive homoclinic classes, Discrete Contin. Dyn. Syst. 14 (2006), no. 3, 465-481.
22 X. Wen, S. Gan, and L. Wen, $C^1$-stably shadowable chain components are hyperbolic, J. Differential Equations 246 (2009), no. 1, 340-357.   DOI   ScienceOn