Browse > Article
http://dx.doi.org/10.4134/JKMS.2013.50.5.1083

ON A RING PROPERTY UNIFYING REVERSIBLE AND RIGHT DUO RINGS  

Kim, Nam Kyun (Faculty of Liberal Arts and Sciences Hanbat National University)
Lee, Yang (Department of Mathematics Education Pusan National University)
Publication Information
Journal of the Korean Mathematical Society / v.50, no.5, 2013 , pp. 1083-1103 More about this Journal
Abstract
The concepts of reversible, right duo, and Armendariz rings are known to play important roles in ring theory and they are independent of one another. In this note we focus on a concept that can unify them, calling it a right Armendarizlike ring in the process. We first find a simple way to construct a right Armendarizlike ring but not Armendariz (reversible, or right duo). We show the difference between right Armendarizlike rings and strongly right McCoy rings by examining the structure of right annihilators. For a regular ring R, it is proved that R is right Armendarizlike if and only if R is strongly right McCoy if and only if R is Abelian (entailing that right Armendarizlike, Armendariz, reversible, right duo, and IFP properties are equivalent for regular rings). It is shown that a ring R is right Armendarizlike, if and only if so is the polynomial ring over R, if and only if so is the classical right quotient ring (if any). In the process necessary (counter)examples are found or constructed.
Keywords
right Armendarizlike ring; polynomial ring; reversible ring; right duo ring; Armendariz ring; strongly right McCoy ring; regular ring;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Xue, Artinian duo rings and self-dualty, Proc. Amer. Math. Soc. 105 (1989), no. 2, 309-313.   DOI   ScienceOn
2 C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.   DOI   ScienceOn
3 N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.   DOI   ScienceOn
4 N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223.   DOI   ScienceOn
5 T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
6 T.-K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287-2299.   DOI   ScienceOn
7 G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318.   DOI   ScienceOn
8 G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520.   DOI   ScienceOn
9 G. Marks, Duo rings and Ore extensions, J. Algebra 280 (2004), no. 2, 463-471.   DOI   ScienceOn
10 J. Matczuk, Ore extensions over duo ring, J. Algebra 297 (2006), no. 1, 139-154.   DOI   ScienceOn
11 N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295.   DOI   ScienceOn
12 N. H. McCoy, Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28-29.
13 L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.
14 P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.   DOI   ScienceOn
15 M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.   DOI   ScienceOn
16 G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60.   DOI
17 D. D. Anderson and V. Camillo, Armendariz rings and Gaussian ring, Comm. Algebra 26 (1998), no. 7, 2265-2272.   DOI   ScienceOn
18 D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852.   DOI   ScienceOn
19 R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140.   DOI   ScienceOn
20 E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.   DOI
21 H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.   DOI
22 V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615.   DOI   ScienceOn
23 P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648.   DOI
24 R. C. Courter, Finite-dimensional right duo algebras are duo, Proc. Amer. Math. Soc. 84 (1982), no. 2, 157-161.
25 E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91.   DOI   ScienceOn
26 K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
27 K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
28 J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
29 Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52.   DOI   ScienceOn
30 C. Y. Hong, Y. C. Jeon, N. K. Kim, and Y. Lee, The McCoy condition on noncommutative rings, Comm. Algebra 39 (2011), no. 5, 1809-1825.   DOI   ScienceOn
31 C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52.   DOI   ScienceOn