Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.6.1259

SUBTOURNAMENTS ISOMORPHIC TO W5 OF AN INDECOMPOSABLE TOURNAMENT  

Belkhechine, Houmem (Departement De Mathematiques Institut Preparatoire Aux Etudes D'Ingenieurs De Bizerte Universite De Carthage)
Boudabbous, Imed (Departement De Mathematiques Institut Preparatoire Aux Etudes D'Ingenieurs De Sfax Universite De Sfax)
Hzami, Kaouthar (Departement De Mathematiques Faculte Des Sciences De Sfax Universite De Sfax)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.6, 2012 , pp. 1259-1271 More about this Journal
Abstract
We consider a tournament T = (V,A). For each subset X of V is associated the subtournament T(X) = (X,$A{\cap}(X{\times}X)$) of T induced by X. We say that a tournament T' embeds into a tournament T when T' is isomorphic to a subtournament of T. Otherwise, we say that T omits T'. A subset X of V is a clan of T provided that for a, $b{\in}X$ and $x{\in}V{\backslash}X$, $(a,x){\in}A$ if and only if $(b,x){\in}A$. For example, ${\emptyset}$, $\{x\}(x{\in}V)$ and V are clans of T, called trivial clans. A tournament is indecomposable if all its clans are trivial. In 2003, B. J. Latka characterized the class ${\tau}$ of indecomposable tournaments omitting a certain tournament $W_5$ on 5 vertices. In the case of an indecomposable tournament T, we will study the set $W_5$(T) of vertices $x{\in}V$ for which there exists a subset X of V such that $x{\in}X$ and T(X) is isomorphic to $W_5$. We prove the following: for any indecomposable tournament T, if $T{\notin}{\tau}$, then ${\mid}W_5(T){\mid}{\geq}{\mid}V{\mid}$ -2 and ${\mid}W_5(T){\mid}{\geq}{\mid}V{\mid}$ -1 if ${\mid}V{\mid}$ is even. By giving examples, we also verify that this statement is optimal.
Keywords
tournament; indecomposable; embedding; critical;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Belkhechine, I. Boudabbous, and K. Hzami, Sous-tournois isomorphes a $W_{5}$ dans un tournoi indecomposable, C. R. Math. Acad. Sci. Paris 350 (2012), no. 7-8, 333-337.   DOI   ScienceOn
2 A. Benato and K. Cameron, On an adjacency property of almost all tournaments, Discrete Math. 306 (2006), no. 19-20, 2327-2335.   DOI   ScienceOn
3 A. Cournier and P. Ille, Minimal indecomposable graphs, Discrete Math. 183 (1998), no. 1-3, 61-80.   DOI   ScienceOn
4 H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer Monographs in Mathematics, 1999.
5 A. Ehrenfeucht and G. Rozenberg, Primitivity is hereditary for 2-structures, Theoret. Comput. Sci. 70 (1990), no. 3, 343-358.   DOI   ScienceOn
6 P. Erdos, E. Fried, A. Hajnal, and C. Milner, Some remarks on simple tournaments, Algebra Universalis 2 (1972), 238-245.   DOI
7 R. Fagin, Probabilities on finite models, J. Symbolic Logic 41 (1976), no. 1 50-58.   DOI   ScienceOn
8 R. Fagin, Finite-model theory - a personal perspective, Theoret. Comput. Sci. 116 (1993), no. 1, 3-31.   DOI   ScienceOn
9 C. Gnanvo and P. Ille, La reconstruction des tournois sans diamants, Z. Math. Logik Grundlag. Math. 38 (1992), no. 3, 283-291.   DOI
10 P. Ille, Indecomposable graphs, Discrete Math. 173 (1997), no. 1-3, 71-78.   DOI   ScienceOn
11 B. J. Latka, Structure theorem for tournaments omitting $N_{5}$, J. Graph Theory 42 (2003), no. 3, 165-192.   DOI   ScienceOn
12 G. Lopez and C. Rozy, Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and (n − 1). I, Z. Math. Logik Grundlag. Math. 38 (1992), no. 1, 27-37.   DOI
13 J. H. Schmerl and W. T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993), no. 1-3, 191-205.   DOI   ScienceOn
14 H. Belkhechine and I. Boudabbous, Tournois indecomposables et leurs soustournois indecomposables a 5 sommets, C. R. Math. Acad. Sci. Paris 343 (2006), no. 11-12, 685-688.   DOI   ScienceOn
15 V. J. Mueller, J. Nesetril, and J. Pelant, Either tournaments or algebras?, Discrete Math. 11 (1975), 37-66.   DOI   ScienceOn
16 M. Y. Sayar, Partially critical tournaments and partially critical supports, Contrib. Discrete Math. 6 (2011), no. 1, 52-76.