Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.4.671

THE TILTED CARATHÉODORY CLASS AND ITS APPLICATIONS  

Wang, Li-Mei (Division of Mathematics Graduate School of Information Sciences Tohoku University)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.4, 2012 , pp. 671-686 More about this Journal
Abstract
This paper mainly deals with the tilted Carath$\acute{e}$odory class by angle ${\lambda}$ ${\in}$ ($-{\pi}/2$, ${\pi}/2$), denoted by $P{\lambda}$) an element of which maps the unit disc into the tilted right half-plane {<${\omega}$ : Re $e^{i{\lambda}}{\omega}$ > 0}. Firstly we will characterize $P{\lambda}$ from different aspects, for example by subordination and convolution. Then various estimates of functionals over $P{\lambda}$ are deduced by considering these over the extreme points of $P{\lambda}$ or the knowledge of functional analysis. Finally some subsets of analytic functions related to $P{\lambda}$ including close-to-convex functions with argument ${\lambda}$, ${\lambda}$-spirallike functions and analytic functions whose derivative is in $P{\lambda}$ are also considered as applications.
Keywords
the tilted Carath$\acute{e}$odory class; ${\lambda}$-spirallike functions; close-to-convex functions with argument ${\lambda}$; convolution; subordination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Yamashita, Gel'fer functions, integral means, bounded mean oscillation, and univalency, Trans. Amer. Math. Soc. 321 (1990), no. 1, 245-259.
2 V. A. Zmorovic, On bounds of convexity for starlike function of order ${\alpha}$ in the circle |z| < 1 and in the circular region 0 < |z| < 1, Mat. Sb. 68 (110) (1965), 518-526; English transl., Amer. Math. Soc. Transl. (2) 80 (1969), 203-213.
3 V. A. Zmorovic, On the bounds of starlikeness and univalence in certain classes of functions regular in the circle |z| < 1, Ukrain. Mat. Z. 18 (1966), 28-39; English transl., Amer. Math. Soc. Transl. (2) 80 (1969), 227-242.
4 T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537.   DOI   ScienceOn
5 M. Nunokawa, On the univalency and multivalency of certain analysis functions, Math. Z. 104 (1968), 394-404.   DOI
6 M. S. Robertson, Variational methods for functions with positive real part, Trans. Amer. Math. Soc. 102 (1962), 82-93.   DOI   ScienceOn
7 St. Ruscheweyh and V. Singh, On certain extremal problems for functions with positive real part, Proc. Amer. Math. Soc. 61 (1976), no. 2, 329-334.   DOI   ScienceOn
8 M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236-253.   DOI   ScienceOn
9 M. S. Robertson, Radii of star-likeness and close-to-covexity, Proc. Amer. Math. Soc. 16 (1965), 847-852.
10 St. Ruscheweyh, Convolution in geometric function theory, Sem. Math. Sup. 83, University of Montreal, Montreal, Quebec, Canada 1982.
11 K. Sakaguchi, A variational method for functions with positive real part, J. Math. Soc. Japan 16 (1964), 287-297.   DOI
12 I. Schur, Uber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, J. Reine Angew. Math. 147 (1917), 205-232.
13 I. Schur, Uber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, J. Reine Angew. Math. 148 (1918), 122-145.
14 L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat.-Fys. 62 (1932), 12-19.
15 L.-M. Wang, Coefficient estimates for close-to-convex functions with argument ${\lambda}$, Bull. Berg. Math. Soc. (to appear).
16 F. Holland, The extreme points of a class of functions with positive real part, Math. Ann. 202 (1973), 85-87.   DOI
17 I. Graham and G. Kohr, Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, Inc., New York, 2003.
18 F. Gray and St. Ruscheweyh, Functions whose derivatives take values in a half-plane, Proc. Amer. Math. Soc. 104 (1988), no. 1, 215-218.   DOI   ScienceOn
19 D. J. Hallenbeck and T. H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Monographs and Studies in Mathematics, 22. Pitman (Advanced Publishing Program), Boston, MA, 1984.
20 G. Herglotz, Uber Potenzreihen mit positivem, reellen Teil in Einheitskreis, Ber. Verh. Sachs. Akad. Wiss. Leipzig (1911), 501-511.
21 Y. C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math. 32 (2002), no. 1, 179-200.   DOI   ScienceOn
22 Y. C. Kim and T. Sugawa, A conformal invariant for nonvanishing analytic functions and its applications, Michigan Math. J. 54 (2006), no. 2, 393-410.   DOI
23 Y. C. Kim and T. Sugawa, Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 1, 131-143.   DOI   ScienceOn
24 Y. C. Kim and T. Sugawa, A note on Bazilevic functions, Taiwanese J. Math. 13 (2009), no. 5, 1489-1495.   DOI
25 R. A. Kortram, The extreme points of a class of functions with positive real part, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), no. 4, 449-459.
26 R. J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143-158.   DOI
27 S. Gelfer, On the class of regular functions which do not take on any pair of values ${\omega}$ and $-{\omega}$, Mat. Sb. 19 (1946), 33-46.
28 O. P. Ahuja and H. Silverman, A survey on spiral-like and related function classes, Math. Chronicle 20 (1991), 39-66.
29 S. D. Bernardi, New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions, Proc. Amer. Math. Soc. 45 (1974), 113-118.   DOI   ScienceOn
30 P. L. Duren, Univalent Functions, Grundlehren Math. Wiss. 259, Springer-Verlag, New York, 1983.
31 A. W. Goodman, Univalent Functions. Vol. II, Mariner Publishing Co. Inc., 1983.