Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.2.293

THE CHIRAL SUPERSTRING SIEGEL FORM IN DEGREE TWO IS A LIFT  

Poor, Cris (Department of Mathematics Fordham University)
Yuen, David S. (Department of Mathematics and Computer Science Lake Forest College)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.2, 2012 , pp. 293-314 More about this Journal
Abstract
We prove that the Siegel modular form of D'Hoker and Phong that gives the chiral superstring measure in degree two is a lift. This gives a fast algorithm for computing its Fourier coefficients. We prove a general lifting from Jacobi cusp forms of half integral index t/2 over the theta group ${\Gamma}_1$(1, 2) to Siegel modular cusp forms over certain subgroups ${\Gamma}^{para}$(t; 1, 2) of paramodular groups. The theta group lift given here is a modification of the Gritsenko lift.
Keywords
Siegel modular form; Jacobi form; chiral superstring measure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Freitag, Siegelsche Modulfunktionen, Grundlehren der mathematischen Wissen-schaften, Band 254, Berlin-Heidelberg-New York: Springer-Verlag, 1983.
2 V. Gritsenko, Arithmetical lifting and its applications, Number theory (Paris, 1992-1993), 103-126, London Math. Soc. Lecture Note Ser., 215, Cambridge Univ. Press, Cambridge, 1995.
3 V. Gritsenko, Irrationality of the moduli spaces of polarized abelian surfaces, Internat. Math. Res. Notices 1994 (1994), no. 6, 235-243.   DOI
4 S. Grushevsky, Superstring scattering amplitudes in higher genus, Comm. Math. Phys. 287 (2009), no. 2, 749-767.   DOI   ScienceOn
5 D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhauser, Boston, 1984.
6 S. Grushevsky and R. Salvati Manni, The superstring cosmological constant and the Schottky form in genus 5, Amer. J. Math. 133 (2011), no. 4, 1007-1027.   DOI
7 T. Ichikawa, On Teichmuller modular forms, Math. Ann. 299 (1994), no. 4, 731-740.   DOI
8 J.-I. Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817-855.   DOI   ScienceOn
9 J.-I. Igusa, Theta Functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972.
10 A. Morozov, NSR superstring measures revisited, J. High Energy Phys. 2008 (2008), no. 5, 086, 27 pp.
11 M. Oura, C. Poor, R. Salvati Manni, and D. Yuen, Modular forms of weight 8 for ${\tau}_{g}$(1 2), Math. Ann. 346 (2010), no. 2, 477-498.   DOI   ScienceOn
12 C. Poor and D. Yuen, Binary forms and the hyperelliptic superstring Ansatz, (to appear) Math. Ann.
13 C. Poor and D. Yuen, Paramodular cusp forms, (preprint), arXiv:0912.0049.
14 O. Delzeith, Paramodulmannigfaltigkeiten von allgemeinem Typ, Inaugural Dissertation der Ruprecht-Karls-Universitaet Heidelberg, 1995.
15 A. Andrianov, Quadratic Forms and Hecke Operators, Die Grund. der Math. Wissenschaften, Band 286, Springer: New York Berlin Heidelberg, 1987.
16 S. L. Cacciatori, F. Dalla Piazza, and B. van Geemen, Modular forms and three loop superstring amplitudes, Nuclear Phys. B 800 (2008), no. 3, 565-590.   DOI   ScienceOn
17 F. Clery, Relevement Arithmetique et Multiplicatif de Formes de Jacobi, These, l'Universite Lille 1, 2009.
18 E. D'Hoker and D. H. Phong, Two-loop superstrings IV, The cosmological constant and modular forms, Nuclear Phys. B 639 (2002), no. 1-2, 129-181.   DOI   ScienceOn
19 M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, Vol. 55, Birkhauser Verlag, 1985.
20 G. Faltings and C. Chai, Degeneration of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 22, (3.Folge) Berlin-Heidelberg: Springer-Verlag, 1990.