1 |
F. Ge and Z. W. Sun, On universal sums of generalized polygonal numbers, arXiv:0906.2450, 2009.
|
2 |
S. Guo, H. Pan, and Z. W. Sun, Mixed sums of squares and triangular numbers. II, Integers 7 (2007), A56, 5 pp.
|
3 |
R. K. Guy, Every number is expressible as the sum of how many polygonal numbers?, Amer. Math. Monthly 101 (1994), no. 2, 169-172.
DOI
ScienceOn
|
4 |
W. C. Jagy, Five regular or nearly-regular ternary quadratic forms, Acta Arith. 77 (1996), no. 4, 361-367.
DOI
|
5 |
W. C. Jagy, I. Kaplansky, and A. Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), no. 2, 332-341.
DOI
|
6 |
Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge University Press, 1993.
|
7 |
M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math. vol 164, Springer-Verlag, New York, 1991.
|
8 |
B.-K. Oh, Regular positive ternary quadratic forms, Acta. Arith. 147 (2011), no. 3, 233-243.
DOI
|
9 |
B.-K. Oh, Representations of arithmetic progressions by positive definite quadratic forms, to appear in Int. J. Number Theory.
|
10 |
B.-K. Oh and Z. W. Sun, Mixed sums of squares and triangular numbers. III, J. Number Theory 129 (2009), no. 4, 964-969.
DOI
ScienceOn
|
11 |
O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, New York, 1963.
|
12 |
K. Ono and K. Soundararajan, Ramanujan's ternary quadratic form, Invent. Math. 130 (1997), no. 3, 415-454.
DOI
|
13 |
Z. W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), no. 2, 103-113.
DOI
|
14 |
Z. W. Sun, On universal sums of polygonal numbers, arXiv:0905.0635, 2009.
|
15 |
M. Bhargava and J. Hanke, Universal quadratic forms and the 290 theorem, to appear in Invent. Math.
|
16 |
M. Bhargava, On the Conway-Schneeberger fifteen theorem, Quadratic forms and their applications (Dublin, 1999), 27-37, Contemp. Math., 272, Amer. Math. Soc., Providence, RI, 2000.
|