1 |
J. Cassaigne, Constructing innite words of intermediate complexity, Developments in language theory, 173-184, Lecture Notes in Comput. Sci., 2450, Springer, Berlin, 2003.
DOI
ScienceOn
|
2 |
J. Cassaigne and J. Karhumaki, Toeplitz words, generalized periodicity and periodically iterated morphisms, European J. Combin. 18 (1997), no. 5, 497-510.
DOI
ScienceOn
|
3 |
D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254-260.
DOI
|
4 |
D. Dou, W. Huang, and K. Park, Entropy dimension of topological dynamical systems, to appear in Transactions of AMS.
|
5 |
D. Dou and K. Park, Examples of entropy generating sequence, preprint.
|
6 |
S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math. 206 (1999), no. 1-3, 145-154.
DOI
ScienceOn
|
7 |
S. Ferenczi and K. Park, Entropy dimensions and a class of constructive examples, Discrete Contin. Dyn. Syst. 17 (2007), no. 1, 133-141.
DOI
|
8 |
K. Jacobs and M. Keane, 0 - 1-sequences of Toeplitz type, Z. Wahrsch. Verw. Gebiete 13 (1969), 123-131.
DOI
|
9 |
N. G. Markley and M. E. Paul, Almost automorphic symbolic minimal sets without unique ergodicity, Israel J. Math. 34 (1979), no. 3, 259-272.
DOI
|
10 |
S. Williams, Toeplitz minimal ows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 1, 95-107.
DOI
|
11 |
Y. Ahn, D. Dou, and K. Park, Entropy dimension and variational principle, to appear in Studia Mathematica.
|