1 |
R. Livne, Motivic orthogonal two-dimensional representations of Gal(Q/Q), Israel J. Math. 92 (1995), no. 1-3, 149-156.
DOI
|
2 |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1998.
|
3 |
M. Moisio, On the moments of Kloosterman sums and fibre products of Kloosterman curves, Finite Fields Appl. 14 (2008), no. 2, 515-531.
DOI
ScienceOn
|
4 |
C. Peters, J. Top, and M. van der Vlugt, The Hasse zeta function of a K3 surfacerelated to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992), 151-176.
|
5 |
H. Salie, Uber die Kloostermanschen Summen S(u; v; q), Math. Z. 34 (1932), no. 1, 91-109.
DOI
|
6 |
I. E. Shpalinski, Exponential Sums in Coding Theory and Cryptography, Lecture Notes of Tutorial Lectures given at the Institute of Mathematics of the NUS, Singapore, July 23-26, 2001.
|
7 |
G. van der Geer, R. Schoof, and M. van der Vlugt, Weight formulas for ternary Melas codes, Math. Comp. 58 (1992), no. 198, 781-792.
DOI
ScienceOn
|
8 |
K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, The modularity of theBarth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263-289.
DOI
|
9 |
D. S. Kim, Gauss sums for (2n; q), Acta Arith. 80 (1997), no. 4, 343-365.
|
10 |
D. S. Kim,Exponential sums for (2n; q) and their applications, Acta Arith. 97 (2001), no. 1, 67-86.
DOI
|
11 |
D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), no. 1, 55-71.
DOI
|
12 |
D. S. Kim, Exponential sums for symplectic groups and their applications, Acta Arith. 88 (1999), no. 2, 155-171.
DOI
|
13 |
D. S. Kim, Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups, Adv. Math. Commun. 3 (2009), no. 2, 167-178.
DOI
|
14 |
H. D. Kloosterman, On the representation of numbers in the form , Acta Math. 49 (1927), no. 3-4, 407-464.
DOI
|
15 |
D. S. Kim, Ternary codes associated with (2n; q) and power moments of Kloosterman sums with square arguments, submitted.
|
16 |
D. S. Kim, Recursive formulas generating power moments of multi-dimensional Kloosterman sums and m-multiple power moments of Kloosterman sums, submitted.
|
17 |
D. S. Kim and J. H. Kim, Ternary codes associated with symplectic groups and power moments of Kloosterman sums with square arguments, submitted.
|
18 |
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge University Pless, Cambridge, 1987.
|
19 |
R. J. Evans, Seventh power moments of Kloosterman sums, Israel J. Math. 175 (2010), 349-362.
DOI
|