Browse > Article
http://dx.doi.org/10.4134/JKMS.2011.48.2.267

INFINITE FAMILIES OF RECURSIVE FORMULAS GENERATING POWER MOMENTS OF TERNARY KLOOSTERMAN SUMS WITH SQUARE ARGUMENTS ASSOCIATED WITH O-(2n, q)  

Kim, Dae-San (DEPARTMENT OF MATHEMATICS SOGANG UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.48, no.2, 2011 , pp. 267-288 More about this Journal
Abstract
In this paper, we construct eight infinite families of ternary linear codes associated with double cosets with respect to certain maximal parabolic subgroup of the special orthogonal group $SO^-$(2n, q). Here q is a power of three. Then we obtain four infinite families of recursive formulas for power moments of Kloosterman sums with square arguments and four infinite families of recursive formulas for even power moments of those in terms of the frequencies of weights in the codes. This is done via Pless power moment identity and by utilizing the explicit expressions of exponential sums over those double cosets related to the evaluations of "Gauss sums" for the orthogonal groups $O^-$(2n, q).
Keywords
index terms-Kloosterman sum; orthogonal group; special orthogonal group; double cosets; maximal parabolic subgroup; Pless power moment identity; weight distribution;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. Livne, Motivic orthogonal two-dimensional representations of Gal(Q/Q), Israel J. Math. 92 (1995), no. 1-3, 149-156.   DOI
2 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1998.
3 M. Moisio, On the moments of Kloosterman sums and fibre products of Kloosterman curves, Finite Fields Appl. 14 (2008), no. 2, 515-531.   DOI   ScienceOn
4 C. Peters, J. Top, and M. van der Vlugt, The Hasse zeta function of a K3 surfacerelated to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992), 151-176.
5 H. Salie, Uber die Kloostermanschen Summen S(u; v; q), Math. Z. 34 (1932), no. 1, 91-109.   DOI
6 I. E. Shpalinski, Exponential Sums in Coding Theory and Cryptography, Lecture Notes of Tutorial Lectures given at the Institute of Mathematics of the NUS, Singapore, July 23-26, 2001.
7 G. van der Geer, R. Schoof, and M. van der Vlugt, Weight formulas for ternary Melas codes, Math. Comp. 58 (1992), no. 198, 781-792.   DOI   ScienceOn
8 K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, The modularity of theBarth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263-289.   DOI
9 D. S. Kim, Gauss sums for $O^{-}$(2n; q), Acta Arith. 80 (1997), no. 4, 343-365.
10 D. S. Kim,Exponential sums for $O^{-}$(2n; q) and their applications, Acta Arith. 97 (2001), no. 1, 67-86.   DOI
11 D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), no. 1, 55-71.   DOI
12 D. S. Kim, Exponential sums for symplectic groups and their applications, Acta Arith. 88 (1999), no. 2, 155-171.   DOI
13 D. S. Kim, Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups, Adv. Math. Commun. 3 (2009), no. 2, 167-178.   DOI
14 H. D. Kloosterman, On the representation of numbers in the form $ax^{2}+by^{2}+cz^{2}+dt^{2}$, Acta Math. 49 (1927), no. 3-4, 407-464.   DOI
15 D. S. Kim, Ternary codes associated with $O^{-}$(2n; q) and power moments of Kloosterman sums with square arguments, submitted.
16 D. S. Kim, Recursive formulas generating power moments of multi-dimensional Kloosterman sums and m-multiple power moments of Kloosterman sums, submitted.
17 D. S. Kim and J. H. Kim, Ternary codes associated with symplectic groups and power moments of Kloosterman sums with square arguments, submitted.
18 R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge University Pless, Cambridge, 1987.
19 R. J. Evans, Seventh power moments of Kloosterman sums, Israel J. Math. 175 (2010), 349-362.   DOI