1 |
V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory 37 (1991), no. 5, 1412-1418.
DOI
ScienceOn
|
2 |
M. Grassl, Bounds on the minimum distance of linear codes, online available at http://www.codetables.de. Accessed on 2008-03-09.
|
3 |
T. Helleseth, T. Klove, and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block length , Discrete Math. 18 (1977), no. 2, 179-211.
DOI
ScienceOn
|
4 |
H. Horimoto and K. Shiromoto, A Singleton bound for linear codes over quasi-Frobenius rings, Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Hawaii (USA), 51-52 (1999).
|
5 |
W. C. Huffman and V. S. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
|
6 |
T. Klove, Support weight distribution of linear codes, A collection of contributions in honour of Jack van Lint. Discrete Math. 106/107 (1992), 311-316.
|
7 |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes I, II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
8 |
G. McGuire and H. N. Ward, The weight enumerator of the code of the projective plane of order 5, Geom. Dedicata 73 (1998), no. 1, 63-77.
DOI
|
9 |
H. G. Schaathun, Duality and support weight distributions, IEEE Trans. Inform. Theory 50 (2004), no. 5, 862-867.
DOI
ScienceOn
|
10 |
J. Simonis, The effective length of subcodes, Appl. Algebra Engrg. Comm. Comput. 5 (1994), no. 6, 371-377.
DOI
|
11 |
M. A. Tsfasman and S. G. Vladut¸, Geometric approach to higher weights, IEEE Trans. Inform. Theory 41 (1995), no. 6, part 1, 1564-1588.
DOI
ScienceOn
|
12 |
L. R. Vermani, Elements of Algebraic Coding Theory, Chapman and Hall Mathematics Series. Chapman and Hall, Ltd., London, 1996.
|
13 |
J. Cannon and C. Playoust, An Introduction to Magma, University of Sydney, Sydney, Australia, 1994.
|
14 |
http://kutacc.kut.ac.kr/~sunghyu/data/hw/HW-P5-48-72.pdf
|
15 |
http://kutacc.kut.ac.kr/~sunghyu/data/hw/HW-SHRM.pdf
|
16 |
D. Britz, T. Britz, K. Shiromoto, and H. K. Sorensen, The higher weight enumerators of the doubly-even, self-dual [48, 24, 12] code, IEEE Trans. Inform. Theory 53 (2007), no. 7, 2567-2571.
DOI
ScienceOn
|
17 |
S. T. Dougherty, T. A. Gulliver, and M. Oura, Higher weights and graded rings for binary self-dual codes, Discrete Appl. Math. 128 (2003), no. 1, 121-143.
DOI
ScienceOn
|
18 |
S. T. Dougherty and R. Ramadurai, Higher weights of codes from projective planes and biplanes, Math. J. Okayama Univ. 49 (2007), 149-161.
|
19 |
S. T. Dougherty and K. Shiromoto, MDR codes over , IEEE Trans. Inform. Theory 46 (2000), no. 1, 265-269.
DOI
ScienceOn
|