A q-ANALOGUE OF THE GENERALIZED FACTORIAL NUMBERS |
Song, Seok-Zun
(DEPARTMENT OF MATHEMATICS JEJU NATIONAL UNIVERSITY)
Cheon, Gi-Sang (DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY) Jun, Young-Bae (DEPARTMENT OF MATHEMATICS EDUCATION GYEONGSANG NATIONAL UNIVERSITY) Beasley, Leroy B. (DEPARTMENT OF MATHEMATICS AND STATISTICS UTAH STATE UNIVERSITY) |
1 | H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J. 28(1961), 281-289. DOI |
2 | L. C. Hsu, A summation rule using Stirling numbers of the second kind, Fibonacci Quart. 31 (1993), no. 3, 256-262. |
3 | L. C. Hsu and P. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998), no. 3, 366-384. DOI ScienceOn |
4 | C. Jordan, Calculus of Finite Differences, Chelsea Pub. Co., New York, 1950. |
5 | M. Koutras, Noncentral Stirling numbers and some applications, Discrete Math. 42 (1982), no. 1, 73-89. DOI ScienceOn |
6 | D. E. Loeb, A generalization of the Stirling numbers, Discrete Math. 103 (1992), no. 3, 259-269. DOI ScienceOn |
7 | Ch. A. Charalambides, Non-central generalized q-factorial coefficients and q-Stirling numbers, Discrete Math. 275 (2004), no. 1-3, 67-85. DOI ScienceOn |
8 | G. S. Call and D. J. Vellemam, Pascal’s matrices, Amer. Math. Monthly 100 (1993), no. 4, 372-376. DOI ScienceOn |
9 | L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. DOI |
10 | Ch. A. Charalambides, On the q-differences of the generalized q-factorials, J. Statist. Plann. Inference 54 (1996), no. 1, 31-43. DOI ScienceOn |
11 | G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl. 329 (2001), no. 1-3, 49-59. DOI ScienceOn |
12 | L. Comtet, Nombres de Stirling generaux et fonctions symetriques, C. R. Acad. Sci. Paris Ser. A-B 275 (1972), A747-A750. |
13 | L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974. |
14 | C. G. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), no. 1-3, 199-218. DOI ScienceOn |
15 | A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and p, q-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499. DOI |
16 | S. C. Milne, A q-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978), 89-118. DOI ScienceOn |
17 | H. Oruc and H. K. Akmaz, Symmetric functions and the Vandermonde matrix, J. Comput. Appl. Math. 172 (2004), no. 1, 49-64. DOI ScienceOn |