Browse > Article
http://dx.doi.org/10.4134/JKMS.2010.47.3.645

A q-ANALOGUE OF THE GENERALIZED FACTORIAL NUMBERS  

Song, Seok-Zun (DEPARTMENT OF MATHEMATICS JEJU NATIONAL UNIVERSITY)
Cheon, Gi-Sang (DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY)
Jun, Young-Bae (DEPARTMENT OF MATHEMATICS EDUCATION GYEONGSANG NATIONAL UNIVERSITY)
Beasley, Leroy B. (DEPARTMENT OF MATHEMATICS AND STATISTICS UTAH STATE UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.47, no.3, 2010 , pp. 645-657 More about this Journal
Abstract
In this paper, more generalized q-factorial coefficients are examined by a natural extension of the q-factorial on a sequence of any numbers. This immediately leads to the notions of the extended q-Stirling numbers of both kinds and the extended q-Lah numbers. All results described in this paper may be reduced to well-known results when we set q = 1 or use special sequences.
Keywords
q-factorial; q-Stirling numbers; q-Lah numbers;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J. 28(1961), 281-289.   DOI
2 L. C. Hsu, A summation rule using Stirling numbers of the second kind, Fibonacci Quart. 31 (1993), no. 3, 256-262.
3 L. C. Hsu and P. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998), no. 3, 366-384.   DOI   ScienceOn
4 C. Jordan, Calculus of Finite Differences, Chelsea Pub. Co., New York, 1950.
5 M. Koutras, Noncentral Stirling numbers and some applications, Discrete Math. 42 (1982), no. 1, 73-89.   DOI   ScienceOn
6 D. E. Loeb, A generalization of the Stirling numbers, Discrete Math. 103 (1992), no. 3, 259-269.   DOI   ScienceOn
7 Ch. A. Charalambides, Non-central generalized q-factorial coefficients and q-Stirling numbers, Discrete Math. 275 (2004), no. 1-3, 67-85.   DOI   ScienceOn
8 G. S. Call and D. J. Vellemam, Pascal’s matrices, Amer. Math. Monthly 100 (1993), no. 4, 372-376.   DOI   ScienceOn
9 L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.   DOI
10 Ch. A. Charalambides, On the q-differences of the generalized q-factorials, J. Statist. Plann. Inference 54 (1996), no. 1, 31-43.   DOI   ScienceOn
11 G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl. 329 (2001), no. 1-3, 49-59.   DOI   ScienceOn
12 L. Comtet, Nombres de Stirling generaux et fonctions symetriques, C. R. Acad. Sci. Paris Ser. A-B 275 (1972), A747-A750.
13 L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
14 C. G. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), no. 1-3, 199-218.   DOI   ScienceOn
15 A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and p, q-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499.   DOI
16 S. C. Milne, A q-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978), 89-118.   DOI   ScienceOn
17 H. Oruc and H. K. Akmaz, Symmetric functions and the Vandermonde matrix, J. Comput. Appl. Math. 172 (2004), no. 1, 49-64.   DOI   ScienceOn