1 |
M. G. Zinno, A Temperley-Lieb basis coming from the braid group, J. Knot Theory Ramifications 11 (2002), no. 4, 575-599.
DOI
ScienceOn
|
2 |
W. B. R. Lickorish, Three-manifolds and the Temperley-Lieb algebra, Math. Ann. 290 (1991), no. 4, 657-670.
DOI
|
3 |
J. McCammond, Noncrossing partitions in surprising locations, Amer. Math. Monthly 113 (2006), no. 7, 598-610.
DOI
ScienceOn
|
4 |
V. G. Turaev, Quantum Invariants of Knots and 3-manifolds, de Gruyter Studies in Mathematics, 18. Walter de Gruyter & Co., Berlin, 1994.
|
5 |
D. Bessis, The dual braid monoid, Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), no. 5, 647-683.
|
6 |
T. Brady, A partial order on the symmetric group and new K(, 1)'s for the braid groups, Adv. Math. 161 (2001), no. 1, 20-40.
|
7 |
D. Bessis and R. Corran, Non-crossing partitions of type (e, e, r), Adv. Math. 202 (2006), no. 1, 1-49.
|
8 |
D. Bessis, F. Digne, and J. Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2002), no. 2, 287-309.
|
9 |
J. S. Birman, K. H. Ko, and S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998), no. 2, 322-353.
|
10 |
P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. (3) 79 (1999), no. 3, 569-604.
|
11 |
V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25.
|
12 |
V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335-388.
DOI
|
13 |
L. Kauffman, Knots and Physics, World Scientific, Singapore, 1993.
|