Browse > Article
http://dx.doi.org/10.4134/JKMS.2009.46.6.1139

REPRESENTATIONS OF THE MOORE-PENROSE INVERSE OF 2×2 BLOCK OPERATOR VALUED MATRICES  

Deng, Chun Yuan (COLLEGE OF MATHEMATICS SCIENCE SOUTH CHINA NORMAL UNIVERSITY)
Du, Hong Ke (COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE SHAANXI NORMAL UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.46, no.6, 2009 , pp. 1139-1150 More about this Journal
Abstract
We obtain necessary and sufficient conditions for $2{\tims}2$ block operator valued matrices to be Moore-Penrose (MP) invertible and give new representations of such MP inverses in terms of the individual blocks.
Keywords
block operator valued matrix; Moore-Penrose inverse; inverse matrix;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Y.Wei and J. Ding, Representations for Moore-Penrose inverses in Hilbert spaces, Appl. Math. Lett. 14 (2001), no. 5, 599-604.   DOI   ScienceOn
2 Y. Wei and D. S. Djordjevi, On integral representation of the generalized inverse $A_{T}^{(2)},_S$, Appl. Math. Comput. 142 (2003), no. 1, 189-194.   DOI   ScienceOn
3 J. Zhow and G. Wang, Block idempotent matrices and generalized Schur complement, Appl. Math. Comput. 188 (2007), no. 1, 246-256.   DOI   ScienceOn
4 Y. Wei, The representation and approximation for the weighted Moore-Penrose inverse in Hilbert space, Appl. Math. Comput. 136 (2003), no. 2-3, 475-486.   DOI   ScienceOn
5 Y. Wei, A characterization and representation of the generalized inverse $A_{T}^{(2)},_S$ and its applications, Linear Algebra Appl. 280 (1998), no. 2-3, 87-96.   DOI   ScienceOn
6 M. Khadivi, Range inclusion and operator equations, J. Math. Anal. Appl. 197 (1996), no. 2, 630-633.   DOI   ScienceOn
7 Y. Tian, The Moore-Penrose inverses of m $\times$ n block matrices and their applications, Linear Algebra Appl. 283 (1998), no. 1-3, 35-60.   DOI   ScienceOn
8 Y. Wei, J. Cai, and M. K. Ng, Computing Moore-Penrose inverses of Toeplitz matrices by Newton's iteration, Math. Comput. Modelling 40 (2004), no. 1-2, 181-191.   DOI   ScienceOn
9 Y. Wei and N. Zhang, A note on the representation and approximation of the outer inverse $A_{T}^{(2)},_S$ of a matrix A, Appl. Math. Comput. 147 (2004), no. 3, 837-841.   DOI   ScienceOn
10 R. H. Bouldin, Generalized inverses and factorizations, Recent applications of generalized inverses, pp. 233-249, Res. Notes in Math., 66, Pitman, Boston, Mass.-London, 1982.
11 J. Ji, Explicit expressions of the generalized inverses and condensed Cramer rules, Linear Algebra Appl. 404 (2005), 183-192.   DOI   ScienceOn
12 T.-T. Lu and S.-H. Shiou, Inverses of 2 × 2 block matrices, Comput. Math. Appl. 43 (2002), no. 1-2, 119-129.   DOI   ScienceOn
13 P. Phohomsiri and B. Han, An alternative proof for the recursive formulae for computing the Moore-Penrose M-inverse of a matrix, Appl. Math. Comput. 174 (2006), no. 1, 81-97.   DOI   ScienceOn
14 G. Wang and B. Zheng, The weighted generalized inverses of a partitioned matrix, Appl. Math. Comput. 155 (2004), no. 1, 221-233.   DOI   ScienceOn
15 J. K. Baksalary and G. P. H. Styan, Generalized inverses of partitioned matrices in Banachiewicz-Schur form, Linear Algebra Appl. 354 (2002), no. 1-3, 41-47.   DOI   ScienceOn
16 R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.   DOI
17 M. R. Hestenes, Relative hermitian matrices, Pacific J. Math. 11 (1961), 225-245.   DOI