Browse > Article
http://dx.doi.org/10.4134/JKMS.2008.45.4.1135

FOCK SPACE REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS AND GENERALIZED LASCOUX-LECLERC-THIBON ALGORITHM  

Kang, Seok-Jin (Department of Mathematical Sciences Seoul National University)
Kwon, Jae-Hoon (Department of Mathematics University of Seoul)
Publication Information
Journal of the Korean Mathematical Society / v.45, no.4, 2008 , pp. 1135-1202 More about this Journal
Abstract
We construct the Fock space representations of classical quantum affine algebras using combinatorics of Young walls. We also show that the crystal graphs of the Fock space representations can be realized as the crystal consisting of proper Young walls. Finally, we give a generalized version of Lascoux-Leclerc-Thibon algorithm for computing the global bases of the basic representations of classical quantum affine algebras.
Keywords
quantum affine algebra; crystal basis; global basis;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808   DOI
2 G. James and A. Kerber, The Representation Theory of the Symmetric Group, With a foreword by P. M. Cohn. With and introduction by Gilbert de B. Robinson. Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Publishing Co., Reading, Mass., 1981
3 I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New York, 1995
4 J. Brundan and A. Kleshchev, Hecke-Clifford superalgebras, crystals of type $A^{(2)}_{2l}$ and modular branching rules for $S_n$, Represent. Theory 5 (2001), 317-403   DOI
5 I. Grojnowski, Affine $sl_{p}$ controls the modular representation theory of the symmetric group and related Hecke algebras, preprint (1999)
6 J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI, 2002
7 V. Kac, Infinite-Dimensional Lie Algebras, Third edition. Cambridge University Press, Cambridge, 1990
8 S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, Proc. London Math. Soc. (3) 86 (2003), no. 1, 29-69   DOI
9 S.-J. Kang and J.-H. Kwon, Quantum affine algebras, combinatorics of Young walls, and global bases, Electron. Res. Announc. Amer. Math. Soc. 8 (2002), 35-46   DOI
10 M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383-413   DOI
11 M. Kashiwara, T. Miwa, J.-U. H. Petersen, and C. M. Yung, Perfect crystals and q-deformed Fock spaces, Selecta Math. (N.S.) 2 (1996), no. 3, 415-499   DOI
12 A. Lascoux, B. Leclerc, and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205-263   DOI
13 B. Leclerc and J.-Y. Thibon, q-deformed Fock spaces and modular representations of spin symmetric groups, J. Phys. A 30 (1997), no. 17, 6163-6176   DOI   ScienceOn
14 G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498   DOI
15 A. Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, University Lecture Series, 15. American Mathematical Society, Providence, RI, 1999
16 K. Misra and T. Miwa, Crystal base for the basic representation of $U_{q}$(sl(n)) Comm. Math. Phys. 134 (1990), no. 1, 79-88   DOI
17 M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249-260   DOI
18 M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516   DOI
19 M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839-858   DOI