1 |
E. J.Woo, J.Webster, and W. J. Tompkins, The improved Newton-Raphson method and its parallel implementation for static impedance imaging, In Proc. IEEE-EMBS Conf. Part 1, volume 5, pages 102-103, 1990
|
2 |
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983
|
3 |
R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Special section on imaging. Inverse Problems 19 (2003), no. 6, S91-S104
DOI
ScienceOn
|
4 |
D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E. Sci. Instrum. 17 (1984), 723-733
DOI
ScienceOn
|
5 |
M. Cheney, D. Isaacson, J. Newell, J. Goble, and S. Simske, Noser: An algorithm for solving the inverse conductivity problem, Internat. J. Imaging Systems and Technology 2 (1990), 66-75
DOI
|
6 |
M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85-101
DOI
ScienceOn
|
7 |
R. R Coifman, A. McIntosh, and Y. Meyer, L'integrale de Cauchy definit un operateur borne sur pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361-387
DOI
|
8 |
D. Colton, R. Kress, and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math. 81 (1997), no. 2, 269-298
DOI
ScienceOn
|
9 |
D. C. Dobson, Convergence of a reconstruction method for the inverse conductivity problem, SIAM J. Appl. Math. 52 (1992), no. 2, 442-458
DOI
ScienceOn
|
10 |
K. Erhard and R. Potthast, The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering, Inverse Problems 19 (2003), no. 5, 1139-1157
DOI
ScienceOn
|
11 |
L. Escauriaza and J. K. Seo, Regularity properties of solutions to transmission problems, Trans. Amer. Math. Soc. 338 (1993), no. 1, 405-430
DOI
ScienceOn
|
12 |
M. Ikehata, Identification of the curve of discontinuity of the determinant of the anisotropic conductivity, J. Inverse Ill-Posed Probl. 8 (2000), no. 3, 273-285
|
13 |
G. B. Folland, Introduction to partial differential equations, Second edition. Princeton University Press, Princeton, NJ, 1995
|
14 |
D. G. Gisser, D. Isaacson, and J. C. Newell, Current topics in impedance imaging, Clin. Phys. Phyiol. Meas. 8 (1987), 39-46
|
15 |
T. Hohage and C. Schormann, A Newton-type method for a transmission problem in inverse scattering, Inverse Problems 14 (1998), no. 5, 1207-1227
DOI
ScienceOn
|
16 |
V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math. 41 (1988), no. 7, 865-877
DOI
|
17 |
F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems 14 (1998), no. 1, 67-82
DOI
ScienceOn
|
18 |
B. Hofmann, Approximation of the inverse electrical impedance tomography problem by an inverse transmission problem, Inverse Problems 14 (1998), no. 5, 1171-1187
DOI
ScienceOn
|
19 |
B. Hofmann, A denseness theorem with an application to a two-dimensional inverse potential refraction problem, SIAM J. Math. Anal. 30 (1999), no. 4, 896-911
DOI
|
20 |
H. Kang and J. K. Seo, The layer potential technique for the inverse conductivity problem, Inverse Problems 12 (1996), no. 3, 267-278
DOI
ScienceOn
|
21 |
H. Kang, J. K. Seo, and D. Sheen, Numerical identification of discontinuous conductivity coefficients, Inverse Problems 13 (1997), no. 1, 113-123
DOI
ScienceOn
|
22 |
R. Kress, Linear integral equations, Second edition. Applied Mathematical Sciences, 82. Springer-Verlag, New York, 1999
|
23 |
H. Ki and D. Sheen, Numerical inversion of discontinuous conductivities, Inverse Problems 16 (2000), no. 1, 33-47
DOI
ScienceOn
|
24 |
R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, Inverse problems (New York, 1983), 113-123, SIAM-AMS Proc., 14, Amer. Math. Soc., Providence, RI, 1984
|
25 |
R. V. Kohn and A. McKenney, Numerical implementation of a variational method for electrical impedance tomography, Inverse Problems 6 (1990), no. 3, 389-414
DOI
ScienceOn
|
26 |
K. Kwon, Identification of anisotropic anomalous region in inverse problems, Inverse Problems 20 (2004), no. 4, 1117-1136
DOI
ScienceOn
|
27 |
K. Kwon and D. Sheen, Anisotropic inverse conductivity and scattering problems, Inverse Problems 18 (2002), no. 3, 745-756
DOI
ScienceOn
|
28 |
M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichletto-Neumann map, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), no. 5, 771-787
DOI
|
29 |
J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), no. 8, 1097-1112
DOI
|
30 |
W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems 13 (1997), no. 1, 125-134
DOI
ScienceOn
|
31 |
A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1, 71-96
DOI
|
32 |
Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems 19 (2003), no. 5, 1001-1010
DOI
ScienceOn
|
33 |
R. Potthast, Frechet differentiability of boundary integral operators in inverse acoustic scattering, Inverse Problems 10 (1994), no. 2, 431-447
DOI
ScienceOn
|
34 |
F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990), no. 1, 216-243
DOI
ScienceOn
|
35 |
E. Somersalo, M. Cheney, D. Isaacson, and E. L. Isaacson, Layer stripping: a direct numerical method for impedance imaging, Inverse Problems 7 (1991), no. 6, 899-926
DOI
ScienceOn
|
36 |
J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43 (1990), no. 2, 201-232
DOI
|
37 |
G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572-611
DOI
|
38 |
T. J. Yorkey, J. G. Webster, and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Engr. 34 (1987), 843-852
DOI
ScienceOn
|
39 |
J. Sylvester, A convergent layer stripping algorithm for the radially symmetric impedance tomography problem, Comm. Partial Differential Equations 17 (1992), no. 11-12, 1955-1994
DOI
ScienceOn
|