Browse > Article
http://dx.doi.org/10.4134/JKMS.2008.45.1.097

INTEGRAL REPRESENTATIONS IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING BOUNDARY INTEGRAL OPERATORS  

Kwon, Ki-Woon (Department of Biomedical Engineering Younsei University)
Publication Information
Journal of the Korean Mathematical Society / v.45, no.1, 2008 , pp. 97-119 More about this Journal
Abstract
Electrical impedance tomography (EIT) problem with anisotropic anomalous region is formulated in a few different ways using boundary integral operators. The Frechet derivative of Neumann-to-Dirichlet map is computed also by using boundary integral operators and the boundary of the anomalous region is approximated by trigonometric expansion with Lagrangian basis. The numerical reconstruction is done in case that the conductivity of the anomalous region is isotropic.
Keywords
electrical impedance tomography; boundary integral operator; Neumann-to-Dirichlet map;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 E. J.Woo, J.Webster, and W. J. Tompkins, The improved Newton-Raphson method and its parallel implementation for static impedance imaging, In Proc. IEEE-EMBS Conf. Part 1, volume 5, pages 102-103, 1990
2 D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983
3 R. Kress, Newton's method for inverse obstacle scattering meets the method of least squares, Special section on imaging. Inverse Problems 19 (2003), no. 6, S91-S104   DOI   ScienceOn
4 D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E. Sci. Instrum. 17 (1984), 723-733   DOI   ScienceOn
5 M. Cheney, D. Isaacson, J. Newell, J. Goble, and S. Simske, Noser: An algorithm for solving the inverse conductivity problem, Internat. J. Imaging Systems and Technology 2 (1990), 66-75   DOI
6 M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85-101   DOI   ScienceOn
7 R. R Coifman, A. McIntosh, and Y. Meyer, L'integrale de Cauchy definit un operateur borne sur $L^2$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361-387   DOI
8 D. Colton, R. Kress, and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math. 81 (1997), no. 2, 269-298   DOI   ScienceOn
9 D. C. Dobson, Convergence of a reconstruction method for the inverse conductivity problem, SIAM J. Appl. Math. 52 (1992), no. 2, 442-458   DOI   ScienceOn
10 K. Erhard and R. Potthast, The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering, Inverse Problems 19 (2003), no. 5, 1139-1157   DOI   ScienceOn
11 L. Escauriaza and J. K. Seo, Regularity properties of solutions to transmission problems, Trans. Amer. Math. Soc. 338 (1993), no. 1, 405-430   DOI   ScienceOn
12 M. Ikehata, Identification of the curve of discontinuity of the determinant of the anisotropic conductivity, J. Inverse Ill-Posed Probl. 8 (2000), no. 3, 273-285
13 G. B. Folland, Introduction to partial differential equations, Second edition. Princeton University Press, Princeton, NJ, 1995
14 D. G. Gisser, D. Isaacson, and J. C. Newell, Current topics in impedance imaging, Clin. Phys. Phyiol. Meas. 8 (1987), 39-46
15 T. Hohage and C. Schormann, A Newton-type method for a transmission problem in inverse scattering, Inverse Problems 14 (1998), no. 5, 1207-1227   DOI   ScienceOn
16 V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math. 41 (1988), no. 7, 865-877   DOI
17 F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems 14 (1998), no. 1, 67-82   DOI   ScienceOn
18 B. Hofmann, Approximation of the inverse electrical impedance tomography problem by an inverse transmission problem, Inverse Problems 14 (1998), no. 5, 1171-1187   DOI   ScienceOn
19 B. Hofmann, A denseness theorem with an application to a two-dimensional inverse potential refraction problem, SIAM J. Math. Anal. 30 (1999), no. 4, 896-911   DOI
20 H. Kang and J. K. Seo, The layer potential technique for the inverse conductivity problem, Inverse Problems 12 (1996), no. 3, 267-278   DOI   ScienceOn
21 H. Kang, J. K. Seo, and D. Sheen, Numerical identification of discontinuous conductivity coefficients, Inverse Problems 13 (1997), no. 1, 113-123   DOI   ScienceOn
22 R. Kress, Linear integral equations, Second edition. Applied Mathematical Sciences, 82. Springer-Verlag, New York, 1999
23 H. Ki and D. Sheen, Numerical inversion of discontinuous conductivities, Inverse Problems 16 (2000), no. 1, 33-47   DOI   ScienceOn
24 R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, Inverse problems (New York, 1983), 113-123, SIAM-AMS Proc., 14, Amer. Math. Soc., Providence, RI, 1984
25 R. V. Kohn and A. McKenney, Numerical implementation of a variational method for electrical impedance tomography, Inverse Problems 6 (1990), no. 3, 389-414   DOI   ScienceOn
26 K. Kwon, Identification of anisotropic anomalous region in inverse problems, Inverse Problems 20 (2004), no. 4, 1117-1136   DOI   ScienceOn
27 K. Kwon and D. Sheen, Anisotropic inverse conductivity and scattering problems, Inverse Problems 18 (2002), no. 3, 745-756   DOI   ScienceOn
28 M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichletto-Neumann map, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), no. 5, 771-787   DOI
29 J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), no. 8, 1097-1112   DOI
30 W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems 13 (1997), no. 1, 125-134   DOI   ScienceOn
31 A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1, 71-96   DOI
32 Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems 19 (2003), no. 5, 1001-1010   DOI   ScienceOn
33 R. Potthast, Frechet differentiability of boundary integral operators in inverse acoustic scattering, Inverse Problems 10 (1994), no. 2, 431-447   DOI   ScienceOn
34 F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990), no. 1, 216-243   DOI   ScienceOn
35 E. Somersalo, M. Cheney, D. Isaacson, and E. L. Isaacson, Layer stripping: a direct numerical method for impedance imaging, Inverse Problems 7 (1991), no. 6, 899-926   DOI   ScienceOn
36 J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43 (1990), no. 2, 201-232   DOI
37 G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572-611   DOI
38 T. J. Yorkey, J. G. Webster, and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Engr. 34 (1987), 843-852   DOI   ScienceOn
39 J. Sylvester, A convergent layer stripping algorithm for the radially symmetric impedance tomography problem, Comm. Partial Differential Equations 17 (1992), no. 11-12, 1955-1994   DOI   ScienceOn