1 |
D. H. Park and D. Y. Suh, Equivariant semi-algebraic triangulation of real algebraic G-varieties, Kyushu J. Math. 50 (1996), no. 1, 179-205
DOI
ScienceOn
|
2 |
H. Hironaka, Triangulations of algebraic sets, Proc. Sympos. Pure Math. 29 (1975), 165- 185
|
3 |
J. J. Madden and C. M. Stanton, One-dimensional Nash groups, Pacific. J. Math. 154 (1992), no. 2, 331-344
DOI
|
4 |
R. M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), no. 2, 291{302
DOI
ScienceOn
|
5 |
D. H. Park and D. Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242 (2002), no. 4, 725- 742
DOI
|
6 |
J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Erg. der Math. und ihrer Grenzg., vol. 36, Springer-Verlag, Berlin Heidelberg, 1998
|
7 |
G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, London, 1972
|
8 |
G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z. 195 (1987), no. 1, 69-78
DOI
|
9 |
M. -J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean. Math. Soc. 41 (2004), no. 4, 629-646
과학기술학회마을
DOI
|