Browse > Article
http://dx.doi.org/10.4134/JKMS.2007.44.1.179

EQUIVARIANT SEMIALGEBRAIC LOCAL-TRIVIALITY  

Park, Dae-Heui (Department of Mathematics College of Natural Sciences Chonnam National University)
Publication Information
Journal of the Korean Mathematical Society / v.44, no.1, 2007 , pp. 179-188 More about this Journal
Abstract
We prove the equivariant version of the semialgebraic local-triviality of semialgebraic maps.
Keywords
transformation group; semialgebraic set; local-triviality;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 D. H. Park and D. Y. Suh, Equivariant semi-algebraic triangulation of real algebraic G-varieties, Kyushu J. Math. 50 (1996), no. 1, 179-205   DOI   ScienceOn
2 H. Hironaka, Triangulations of algebraic sets, Proc. Sympos. Pure Math. 29 (1975), 165- 185
3 J. J. Madden and C. M. Stanton, One-dimensional Nash groups, Pacific. J. Math. 154 (1992), no. 2, 331-344   DOI
4 R. M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), no. 2, 291{302   DOI   ScienceOn
5 D. H. Park and D. Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242 (2002), no. 4, 725- 742   DOI
6 J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Erg. der Math. und ihrer Grenzg., vol. 36, Springer-Verlag, Berlin Heidelberg, 1998
7 G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, London, 1972
8 G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z. 195 (1987), no. 1, 69-78   DOI
9 M. -J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean. Math. Soc. 41 (2004), no. 4, 629-646   과학기술학회마을   DOI