1 |
A. V. Malysev, A generalization of Kloosterman sums and their estimates, Vestnik Leningrad. Univ. 15 (1960), no. 13, 59-75
|
2 |
T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Math- ematics. Springer-Verlag, New York-Heidelberg, 1976
|
3 |
W. Zhang, On the general Kloosterman sums and its fourth power mean, J. Number Theory 104 (2004), no. 1, 156-161
DOI
ScienceOn
|
4 |
W. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Appl. Math. 35 (2004), no. 2, 237-242
|
5 |
H. Liu and W. Zhang, On the hybrid mean value of Gauss sums and generalized Bernoulli numbers, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 6, 113-115
DOI
ScienceOn
|
6 |
S. Chowla, On Kloosterman's sum, Norske Vid. Selsk. Forh. (Trondheim) 40 (1967), 70-72
|
7 |
T. Estermann, On Kloosterman's sum, Mathematica 8 (1961), 83-86
|
8 |
H. W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131-140
DOI
|
9 |
C.-D. Pan and C.-B. Pan, Goldbach's Conjecture, Chuncui Shuxue yu Yingyong Shuxue Zhuanzhu [Series of Monographs in Pure and Applied Mathematics], 7. Kexue Chuban- she (Science Press), Beijing, 1981
|
10 |
Y. Yi and W. Zhang, On the 2k-th power mean of inversion of L-functions with the weight of Gauss sums, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 1, 175-180
DOI
|
11 |
W. Zhang, Y. Yi, and X. He, On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, J. Number Theory 84 (2000), no. 2, 199-213
DOI
ScienceOn
|
12 |
W. Zhang, The first power mean of the inversion of L-functions and general Klooster- man sums, Monatsh. Math. 136 (2002), no. 3, 259-267
DOI
|
13 |
W. Zhang, On a Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 267 (2002), no. 1, 89-96
DOI
ScienceOn
|
14 |
W. Zhang and H. Liu, A note on the Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 288 (2003), no. 2, 646-659
DOI
ScienceOn
|