1 |
G. S. Birman and K. Nomizu, Trigonometry in Lorentzian Geometry, Amer. Math. Monthly 91 (1984), no. 9, 543-549
DOI
ScienceOn
|
2 |
H. Guggenheimer, Diffential Geometry, Dover Publications, 1977
|
3 |
J. M. McCarthy and B. Roth, The Curvature Theory of Line Trajectories in Spatial Kinematics, ASME Journal of Mechanical Design 103 (1981), no. 4, 718{724
DOI
|
4 |
B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Aca- demic Press, London, 1983
|
5 |
A. Turgut and H. H. Hacisalihoglu, Timelike Ruled Surfaces in the Minkowski 3-Space-II, Turkish J. Math. 22 (1998), no. 1, 33-46
|
6 |
H. H. Ugurlu and A. Cahskan, The Study Mapping for Directed Spacelike and Timelike Lines in Minkowski 3-space , Mathematical and Computational Applications 1 (1996), no. 2, 142-148
DOI
|
7 |
K. Akutagawa and S. Nishikawa, The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Math. J. (2) 42 (1990), no. 1, 67-82
DOI
|
8 |
J. M. McCarthy, On the Scalar and Dual Formulations of the Curvature Theory of Line Trajectories, Journal of Mechanisms, Transmissions, and Automation in Design 109 (1987), 101-106
DOI
ScienceOn
|
9 |
G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instan- taneous, spatial kinematics, Mechanism and Machine Theory 11 (1976), no. 2, 141-158
DOI
ScienceOn
|
10 |
Y. Yayh, A. Cahskan, and H. H. Ugurlu, The E. Study Maps of Circles on Dual Hyperbolic and Lorentzian Unit Spheres and , Math. Proc. R. Ir. Acad. 102A (2002), no. 1, 37-47
|